Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[61. ALEXANDRO FARNESIO CARDINALI AMPLISSIMO ET OPTIMO.]
[62. FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORVM. DIFFINITIONES.]
[63. PETITIONES.]
[64. THEOREMA I. PROPOSITIO I.]
[65. THEOREMA II. PROPOSITIO II.]
[66. THE OREMA III. PROPOSITIO III.]
[67. THE OREMA IIII. PROPOSITIO IIII.]
[68. ALITER.]
[69. THEOREMA V. PROPOSITIO V.]
[70. COROLLARIVM.]
[71. THEOREMA VI. PROPOSITIO VI.]
[72. THE OREMA VII. PROPOSITIO VII.]
[73. THE OREMA VIII. PROPOSITIO VIII.]
[74. THE OREMA IX. PROPOSITIO IX.]
[75. PROBLEMA I. PROPOSITIO X.]
[76. PROBLEMA II. PROPOSITIO XI.]
[77. PROBLEMA III. PROPOSITIO XII.]
[78. PROBLEMA IIII. PROPOSITIO XIII.]
[79. THEOREMA X. PROPOSITIO XIIII.]
[80. THE OREMA XI. PROPOSITIO XV.]
[81. THE OREMA XII. PROPOSITIO XVI.]
[82. THE OREMA XIII. PROPOSITIO XVII.]
[83. THEOREMA XIIII. PROPOSITIO XVIII.]
[84. THEOREMA XV. PROPOSITIO XIX.]
[85. THE OREMA XVI. PROPOSITIO XX.]
[86. THEOREMA XVII. PROPOSITIO XXI.]
[87. THE OREMA XVIII. PROPOSITIO XXII.]
[88. THEOREMA XIX. PROPOSITIO XXIII.]
[89. PROBLEMA V. PROPOSITIO XXIIII.]
[90. THEOREMA XX. PROPOSITIO XXV.]
< >
page |< < (19) of 213 > >|
DE IIS QVAE VEH. IN AQVA.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="32">
          <p style="it">
            <s xml:space="preserve">
              <pb o="19" file="0049" n="49" rhead="DE IIS QVAE VEH. IN AQVA."/>
            eam proportionem babebit, quam a f ad a e. </s>
            <s xml:space="preserve">Sed & </s>
            <s xml:space="preserve">eandem habet
              <lb/>
            a s ad a r. </s>
            <s xml:space="preserve">quare a s ipſi a x eſt æqualis, pars toti, quod fieri non
              <lb/>
              <anchor type="note" xlink:label="note-0049-01a" xlink:href="note-0049-01"/>
            poteſt. </s>
            <s xml:space="preserve">Idem abſurdum ſequetur, ſi ponamus punctum t cadere ul-
              <lb/>
            tra lineam a c. </s>
            <s xml:space="preserve">neceſſarium igitur est, ut in ipſam a c cadat. </s>
            <s xml:space="preserve">quod
              <lb/>
            demonſtrandum propoſuimus.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="2">
            <note position="right" xlink:label="note-0049-01" xlink:href="note-0049-01a" xml:space="preserve">9. quinti</note>
          </div>
        </div>
        <div type="section" level="1" n="33">
          <head xml:space="preserve">LEMMA III.</head>
          <p style="it">
            <s xml:space="preserve">Sit parabole, cuius diameter a b: </s>
            <s xml:space="preserve">atque eam cŏtingen
              <lb/>
            tes rectæ lineæ a c, b d; </s>
            <s xml:space="preserve">a c quidem in puncto c, b d ue
              <lb/>
            ro in b: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per c ductis duabus lineis; </s>
            <s xml:space="preserve">quarum alter a c e
              <lb/>
            diametro æquidiſtet, alter a c f æquidiſtet ipſi b d: </s>
            <s xml:space="preserve">ſuma
              <lb/>
            tur quod uis punctum g in diametro: </s>
            <s xml:space="preserve">fiatque ut f b, ad
              <lb/>
            b g, ita b g ad b h: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per g h ducantur g k l, h e m,
              <lb/>
            æquidiſtantes b d: </s>
            <s xml:space="preserve">per m uero ducatur m n o ipſi a c
              <lb/>
            æquidistans, quæ diametrum ſecet in o: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per n ducta
              <lb/>
            n p uſque ad diametrum, ipſi b d æquidistet. </s>
            <s xml:space="preserve">Dico h o
              <lb/>
            ipſius g b duplam eſſe.</s>
            <s xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:space="preserve">V_EL_ igitur linea m n o ſccat diametrum in g, uel in alijs pun-
              <lb/>
            ctis: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſi quidem ſecat in g, unum at que idem punctum duabus li-
              <lb/>
            teris go notabitur. </s>
            <s xml:space="preserve">Itaque quoniam f c, p n, h e m ſibiipſis æqui
              <lb/>
            distant: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ipſi a c æquidiſtat m n o: </s>
            <s xml:space="preserve">fient triangula a f c, o p n,
              <lb/>
            o h m inter ſe ſimilia. </s>
            <s xml:space="preserve">quare erit o h ad h m, ut a f ad fc: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">per-
              <lb/>
              <anchor type="note" xlink:label="note-0049-02a" xlink:href="note-0049-02"/>
            mut ando o h ad a f, ut h m ad fc. </s>
            <s xml:space="preserve">est autem quadratum h m ad
              <lb/>
            quadratum g l, ut linea h b ad lineam b g, ex uigeſima primi libri
              <lb/>
            conicorum: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quadratum g l ad quadratum fc, ut linea g b ad
              <lb/>
            ipſam b f: </s>
            <s xml:space="preserve">ſuntq; </s>
            <s xml:space="preserve">h b, b g, b f lineæ deinceps proportionales. </s>
            <s xml:space="preserve">er-
              <lb/>
              <anchor type="note" xlink:label="note-0049-03a" xlink:href="note-0049-03"/>
            go & </s>
            <s xml:space="preserve">quadrata h m, g l, f c, & </s>
            <s xml:space="preserve">ipſorum latera proportionalia
              <lb/>
            erunt. </s>
            <s xml:space="preserve">atque idcirco ut quadratum h m ad quadratum g l, ita li-</s>
          </p>
        </div>
      </text>
    </echo>