Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[61. ALEXANDRO FARNESIO CARDINALI AMPLISSIMO ET OPTIMO.]
[62. FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORVM. DIFFINITIONES.]
[63. PETITIONES.]
[64. THEOREMA I. PROPOSITIO I.]
[65. THEOREMA II. PROPOSITIO II.]
[66. THE OREMA III. PROPOSITIO III.]
[67. THE OREMA IIII. PROPOSITIO IIII.]
[68. ALITER.]
[69. THEOREMA V. PROPOSITIO V.]
[70. COROLLARIVM.]
[71. THEOREMA VI. PROPOSITIO VI.]
[72. THE OREMA VII. PROPOSITIO VII.]
[73. THE OREMA VIII. PROPOSITIO VIII.]
[74. THE OREMA IX. PROPOSITIO IX.]
[75. PROBLEMA I. PROPOSITIO X.]
[76. PROBLEMA II. PROPOSITIO XI.]
[77. PROBLEMA III. PROPOSITIO XII.]
[78. PROBLEMA IIII. PROPOSITIO XIII.]
[79. THEOREMA X. PROPOSITIO XIIII.]
[80. THE OREMA XI. PROPOSITIO XV.]
[81. THE OREMA XII. PROPOSITIO XVI.]
[82. THE OREMA XIII. PROPOSITIO XVII.]
[83. THEOREMA XIIII. PROPOSITIO XVIII.]
[84. THEOREMA XV. PROPOSITIO XIX.]
[85. THE OREMA XVI. PROPOSITIO XX.]
[86. THEOREMA XVII. PROPOSITIO XXI.]
[87. THE OREMA XVIII. PROPOSITIO XXII.]
[88. THEOREMA XIX. PROPOSITIO XXIII.]
[89. PROBLEMA V. PROPOSITIO XXIIII.]
[90. THEOREMA XX. PROPOSITIO XXV.]
< >
page |< < of 213 > >|
FED. COMMANDINI
SIT cylindrus, uel cylindri po rtio a c: & plano per a-
xem ducto ſecetur;
cuius ſectio ſit parallelogrammum a b
c d:
& bifariam diuiſis a d, b c parallelogrammi lateribus,
per diuiſionum puncta e f planum baſi æquidiſtans duca-
tur;
quod faciet ſectionem, in cy lindro quidem circulum
æqualem iis, qui ſunt in baſibus, ut demonſtrauit Serenus
in libro cylindricorum, propoſitione quinta:
in cylindri
uero portione ellipſim æqualem, &
ſimilem eis, quæ ſunt
in oppoſitis planis, quod nos
Figure: /permanent/library/4E7V2WGH/figures/0130-01 not scanned
[Figure 86]
demonſtrauimus in commen
tariis in librum Archimedis
de conoidibus, &
ſphæroidi-
bus.
Dico centrum grauita-
tis cylindri, uel cylindri por-
tionis eſſe in plano e f.
Si enĩ
fieri poteſt, fit centrum g:
&
ducatur g h ipſi a d æquidi-
ſtans, uſque ad e f planum.
Itaque linea a e continenter
diuiſa bifariam, erit tandem
pars aliqua ipſius k e, minor
g h.
Diuidantur ergo lineæ
a e, e d in partes æquales ipſi
k e:
& per diuiſiones plana ba
ſibus æquidiſtantia ducãtur.

erunt iam ſectiones, figuræ æ-
quales, &
ſimiles eis, quæ ſunt
in baſibus:
atque erit cylindrus in cylindros diuiſus: & cy
lindri portio in portiones æquales, &
ſimiles ipſi k f. reli-
qua ſimiliter, ut ſuperius in priſmate concludentur.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index