Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[61. ALEXANDRO FARNESIO CARDINALI AMPLISSIMO ET OPTIMO.]
[62. FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORVM. DIFFINITIONES.]
[63. PETITIONES.]
[64. THEOREMA I. PROPOSITIO I.]
[65. THEOREMA II. PROPOSITIO II.]
[66. THE OREMA III. PROPOSITIO III.]
[67. THE OREMA IIII. PROPOSITIO IIII.]
[68. ALITER.]
[69. THEOREMA V. PROPOSITIO V.]
[70. COROLLARIVM.]
[71. THEOREMA VI. PROPOSITIO VI.]
[72. THE OREMA VII. PROPOSITIO VII.]
[73. THE OREMA VIII. PROPOSITIO VIII.]
[74. THE OREMA IX. PROPOSITIO IX.]
[75. PROBLEMA I. PROPOSITIO X.]
[76. PROBLEMA II. PROPOSITIO XI.]
[77. PROBLEMA III. PROPOSITIO XII.]
[78. PROBLEMA IIII. PROPOSITIO XIII.]
[79. THEOREMA X. PROPOSITIO XIIII.]
[80. THE OREMA XI. PROPOSITIO XV.]
[81. THE OREMA XII. PROPOSITIO XVI.]
[82. THE OREMA XIII. PROPOSITIO XVII.]
[83. THEOREMA XIIII. PROPOSITIO XVIII.]
[84. THEOREMA XV. PROPOSITIO XIX.]
[85. THE OREMA XVI. PROPOSITIO XX.]
[86. THEOREMA XVII. PROPOSITIO XXI.]
[87. THE OREMA XVIII. PROPOSITIO XXII.]
[88. THEOREMA XIX. PROPOSITIO XXIII.]
[89. PROBLEMA V. PROPOSITIO XXIIII.]
[90. THEOREMA XX. PROPOSITIO XXV.]
< >
page |< < (18) of 213 > >|
DE IIS QVAE VEH. IN AQVA.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="30">
          <pb o="18" file="0047" n="47" rhead="DE IIS QVAE VEH. IN AQVA."/>
          <p>
            <s xml:space="preserve">Itaque quoniam no ad f ω maiorem habetproportio-
              <lb/>
              <anchor type="note" xlink:label="note-0047-01a" xlink:href="note-0047-01"/>
            nem, quam ad eam, quæ uſque ad axem.</s>
            <s xml:space="preserve">] _Habet enim diame-_
              <lb/>
            _ter portioms n o ad f ω proportionem eandem, quam quindeeim ad_
              <lb/>
            _quatuor; </s>
            <s xml:space="preserve">ad eam uero, quæ uſque ad axem minorem proportionem_
              <lb/>
            _habere ponitur, quàm quindecim ad quatuor. </s>
            <s xml:space="preserve">quare n o ad f ω ma_
              <lb/>
            _iorem habebit proportionem, quàm ad eam, quæ uſque ad axem: </s>
            <s xml:space="preserve">&_</s>
            <s xml:space="preserve">
              <lb/>
            _propterea quæ uſque ad axem ipſa f ω maior erit_.
              <lb/>
            </s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="2">
            <note position="right" xlink:label="note-0047-01" xlink:href="note-0047-01a" xml:space="preserve">B</note>
          </div>
          <note position="right" xml:space="preserve">10. quinti</note>
          <p>
            <s xml:space="preserve">Quoniam ergo in portione a p o l, quæ continetur re-
              <lb/>
            cta linea, & </s>
            <s xml:space="preserve">rectanguli coni ſectione, _k_ ω quidem æ quidi-
              <lb/>
            ſtans eſt ipſi a l; </s>
            <s xml:space="preserve">p i uero diametro æquidiſtat; </s>
            <s xml:space="preserve">ſecaturq;
              <lb/>
            </s>
            <s xml:space="preserve">ab ipſa k ω in h: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">a c æquidiſtat contingenti in p neceſ-
              <lb/>
            ſarium eſt ipſam p i ad p h uel eandem proportionem ha
              <lb/>
            bere, quam habet n ω ad ω o, uel maiorem. </s>
            <s xml:space="preserve">hoc enim iam
              <lb/>
            demonſtratum eſt] _Vbi hoc demonſtratum ſit uel ab ipſo Ar-_
              <lb/>
            _chimede, uel ab alio, numdum apparet, quocircanos demonstra-_
              <lb/>
            _tionem afferemus, poſteaquam non nulla, quæ ad eam pertinent ex-_
              <lb/>
            _plicauerimus_.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
        <div type="section" level="1" n="31">
          <head xml:space="preserve">LEMMAI.</head>
          <p style="it">
            <s xml:space="preserve">Sint lineæ a b, a c angulum b a c continentes: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">à
              <lb/>
            puncto d, quod in linea a c ſumptum ſit, ducantur d e,
              <lb/>
            d f utcunque ad ipſam a b. </s>
            <s xml:space="preserve">Sumptis uero in eadem li.
              <lb/>
            </s>
            <s xml:space="preserve">nea quotlibet punctis g l, ducantur g h, l m ipſi d e
              <lb/>
            æquidistantes; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">g k, l n æquidiſtantes f d. </s>
            <s xml:space="preserve">deinde à
              <lb/>
            punctis d, g uſque ad lineam m l ducantur, d o p qui
              <lb/>
            dem ſecans g h in o; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">g q, quæ æquidistent ipſi b a. </s>
            <s xml:space="preserve">
              <lb/>
            Dico lineas, quæ inter æquidiſtantes ipſi f d ad eas, quæ
              <lb/>
            inter æquidiſtantes d e interiiciuntur, uidelicet k n ad g q,
              <lb/>
            uel ad o p; </s>
            <s xml:space="preserve">f k ad d o; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">f n ad d p eandem inter ſe ſe
              <lb/>
            proportionem habere: </s>
            <s xml:space="preserve">nempe eam, quã habet a f ad a e.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>