Jordanus de Nemore, [Liber de ratione ponderis], 1565
page |< < of 32 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <subchap1>
              <p>
                <s id="id.2.3.02.08">
                  <pb xlink:href="049/01/010.jpg"/>
                </s>
                <s id="id.2.3.02.09">Sit item b, grauius, quám c, et po­
                  <lb/>
                nantur aequaliter, quia ergo utrobi­
                  <lb/>
                que est aeque obliquus descensus pa­
                  <lb/>
                tet, quia b, descendit. </s>
                <s id="id.2.3.02.10">Ponatur etiam
                  <lb/>
                b, inferius, ut libet, et, c, superius: di
                  <lb/>
                co quód etiam in hoc situ erit gra­
                  <lb/>
                uius b, dimittant enim directae lineae
                  <lb/>
                c, d, et b, h, et contingentes circulum
                  <lb/>
                sint b, l, c, m, et sit arcus c, z, simi­
                  <lb/>
                lis, et aequalis, et in eodem situ cum
                  <lb/>
                arcu b, e, quem et linea c, m, contin
                  <lb/>
                get. </s>
                <s id="id.2.3.02.11">Et quia obliquitas arcuum b, e,
                  <lb/>
                uel c, z, est angulus d, c, z, et obli­
                  <lb/>
                quitas arcus, c, e, est in angulo
                  <lb/>
                d, c, m, atque proportio anguli
                  <lb/>
                d, c, z, ad angulum d, c, m, est
                  <lb/>
                minor qualibet proportione,
                  <lb/>
                quae est inter maiorem, et mi­
                  <lb/>
                norem quantitatem. </s>
                <s id="id.2.3.02.12">Minor et
                  <lb/>
                erit, quám pon­
                  <lb/>
                deris b, ad pondus t. </s>
                <s id="id.2.3.02.13">Quomodo ergo plus ad­
                  <lb/>
                dat b, super c, quám obliquitas
                  <lb/>
                super obliquitantem grauius
                  <lb/>
                erit b, in hoc situ, quám c, hac
                  <lb/>
                rationem non definet b, descen
                  <lb/>
                dere, et, c, ascendere, usque f, e, q.
                  <lb/>
                </s>
              </p>
            </subchap1>
            <subchap1>
              <p>
                <s id="id.2.4.00.01">Quaestio tertia.
                  <lb/>
                </s>
              </p>
              <p>
                <figure id="id.049.01.010.1.jpg" xlink:href="049/01/010/1.jpg"/>
                <figure id="id.049.01.010.2.jpg" xlink:href="049/01/010/2.jpg"/>
                <figure id="id.049.01.010.3.jpg" xlink:href="049/01/010/3.jpg"/>
                <s id="id.2.4.01.01">Omne pondus in quam­
                  <lb/>
                cunque partem discedat ab
                  <lb/>
                aequalitate secundum situm
                  <lb/>
                fit leuius.
                  <lb/>
                </s>
              </p>
              <p>
                <s id="id.2.4.02.01">Svpra enim locum aequalita­
                  <lb/>
                tis duo loca signentur super,
                  <lb/>
                et infra, et ab omnibus arcus
                  <lb/>
                resecentur ab inferiore aequales, ut
                  <lb/>
                libet parui, et qui est sub loco ae­
                  <lb/>
                qualitatis plus capiet de directo.</s>
              </p>
            </subchap1>
          </chap>
        </body>
      </text>
    </archimedes>