Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[111. Figure]
[112. Figure]
[113. Figure]
[114. Figure]
[115. Figure]
[116. Figure]
[117. Figure]
[118. Figure]
[119. Figure]
[120. Figure]
[121. Figure]
[122. Figure]
[123. Figure]
[124. Figure]
[125. Figure]
[126. Figure]
[127. Figure]
[128. Figure]
[129. Figure]
[130. Figure]
[131. Figure]
[132. Figure]
[133. Figure]
[134. Figure]
[135. Figure]
[136. Figure]
[137. Figure]
[138. Figure]
[139. Figure]
[140. Figure]
< >
page |< < of 213 > >|
FED. COMMANDINI
tes æqueponderantes ipſam diuidet.
2 Priſmatis, cylindri, & portionis cylindri axem
appello rectam lineam, quæ oppoſitorum plano-
rum centra grauitatis coniungit.
3 Pyramidis, coni, & portionis coni axem dico li
neam, quæ à uertice ad centrum grauitatis baſis
perducitur.
4 Si pyramis, conus, portio coni, uel conoidis ſe-
cetur plano baſi æquidiſtante, pars, quæ eſt ad ba-
ſim, fruſtum pyramidis, coni, portionis coni, uel
conoidis dicetur;
quorum plana æquidiſtantia,
quæ opponuntur ſimilia ſunt, &
inæqualia: axes
uero ſunt axium figurarum partes, quæ in ipſis
comprehenduntur.

PETITIONES.

1 Solidarum figurarum ſimilium centra grauita-
tis ſimiliter ſunt poſita.
2 Solidis figuris ſimilibus, & æqualibus inter ſe
aptatis, centra quoque grauitatis ipſarum inter ſe
aptata erunt.

THEOREMA I. PROPOSITIO I.

Omnis figuræ rectilineæ in circulo deſcriptæ,
quæ æqualibus lateribus, &
angulis contine-

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index