Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

#### Table of figures

< >
[121. Figure]
[122. Figure]
[123. Figure]
[124. Figure]
[125. Figure]
[126. Figure]
[127. Figure]
[128. Figure]
[129. Figure]
[130. Figure]
[131. Figure]
[132. Figure]
[133. Figure]
[134. Figure]
[135. Figure]
[136. Figure]
[137. Figure]
[138. Figure]
[139. Figure]
[140. Figure]
[141. Figure]
[142. Figure]
[143. Figure]
[144. Figure]
[145. Figure]
[146. Figure]
[147. Figure]
[148. Figure]
[149. Figure]
[150. Figure]
< >
page |< < (6) of 213 > >|
DE CENTRO GRAVIT. SOLID.
habebit maiorem proportionẽ,

[Figure 78]
quam c b ad b a.
fiat o b ad b a,
nes.
cum igitur à circulo, uel el-
lipſi, cuius grauitatis centrum
eſt b, auferatur figura rectilinea
e f g h k l m n, cuius centrum a;
reliquæ magnitudinis ex portio
8. Archi-
medis.
nibus compoſitæ centrum graui
tatis erit in linea a b producta,
&
in puncto o, extra figuram po
ſito.
quod quidem fieri nullo mo
do poſſe perſpicuum eſt.
ſequi-
tur ergo, ut circuli &
ellipſis cen
trum grauitatis ſit punctum a,
idem quod figuræ centrum.

ALITER.

Sit circulus, uel ellipſis a b c d,
cuius diameter d b, &
centrum e: ducaturq; per e recta li
nea a c, ſecans ipſam d b adrectos angulos.
erunt a d c,
a b c circuli, uel ellipſis dimidiæ portiones.
Itaque quo-
niam por

[Figure 79]
tiõis a d c
cétrū gra-
uitatis eſt
in diame-
tro d e:
&
portionis
a b c cen-
trum eſt ĩ
ipſa e b:
to
tius circu
li, uel ellipſis grauitatis centrum eritin diametro d b.
Sit autem portionis a d c cẽtrum grauitatis f: & ſumatur