Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[121. Figure]
[122. Figure]
[123. Figure]
[124. Figure]
[125. Figure]
[126. Figure]
[127. Figure]
[128. Figure]
[129. Figure]
[130. Figure]
[131. Figure]
[132. Figure]
[133. Figure]
[134. Figure]
[135. Figure]
[136. Figure]
[137. Figure]
[138. Figure]
[139. Figure]
[140. Figure]
[141. Figure]
[142. Figure]
[143. Figure]
[144. Figure]
[145. Figure]
[146. Figure]
[147. Figure]
[148. Figure]
[149. Figure]
[150. Figure]
< >
page |< < (7) of 213 > >|
DE CENTRO GRAVIT. SOLID.
metrum habens e d. Quoniam igitur circuli uel ellipſis
a e c b grauitatis centrum eſt in diametro b e, &
portio-
nis a e c centrum in linea e d:
reliquæ portionis, uidelicet
a b c centrum grauitatis in ipſa b d conſiſtat neceſſe eſt, ex
octaua propoſitione eiuſdem.

THEOREMA V. PROPOSITIO V.

SI priſma ſecetur plano oppoſitis planis æqui
diſtante, ſectio erit figura æqualis &
ſimilis ei,
quæ eſt oppoſitorum planorum, centrum graui
tatis in axe habens.
Sit priſma, in quo plana oppoſita ſint triangula a b c,
d e f;
axis g h: & ſecetur plano iam dictis planis æquidiſtã
te;
quod faciat ſectionem K l m; & axi in pũcto n occurrat.
Dico _k_ l m triangulum æquale eſſe, & ſimile triangulis a b c
d e f;
atque eius grauitatis centrum eſſe punctum n. Quo-
niam enim plana a b c
Figure: /permanent/library/4E7V2WGH/figures/0125-01 not scanned
[Figure 82]
K l m æquidiſtantia ſecã
16. unde-
cimi.
tur a plano a e;
rectæ li-
neæ a b, K l, quæ ſunt ip
ſorum cõmunes ſectio-
nes inter ſe ſe æquidi-
ſtant.
Sed æquidiſtant
a d, b e;
cum a e ſit para
lelogrammum, ex priſ-
matis diffinitione.
ergo
&
al parallelogrammũ
erit;
& propterea linea
34. prim@_k_l, ipſi a b æqualis.
Si-
militer demonſtrabitur
l m æquidiſtans, &
æqua
lis b c;
& m K ipſi c a.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index