Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[121. Figure]
[122. Figure]
[123. Figure]
[124. Figure]
[125. Figure]
[126. Figure]
[127. Figure]
[128. Figure]
[129. Figure]
[130. Figure]
[131. Figure]
[132. Figure]
[133. Figure]
[134. Figure]
[135. Figure]
[136. Figure]
[137. Figure]
[138. Figure]
[139. Figure]
[140. Figure]
[141. Figure]
[142. Figure]
[143. Figure]
[144. Figure]
[145. Figure]
[146. Figure]
[147. Figure]
[148. Figure]
[149. Figure]
[150. Figure]
< >
page |< < of 213 > >|
FED. COMMANDINI
SIT cylindrus, uel cylindri po rtio a c: & plano per a-
xem ducto ſecetur;
cuius ſectio ſit parallelogrammum a b
c d:
& bifariam diuiſis a d, b c parallelogrammi lateribus,
per diuiſionum puncta e f planum baſi æquidiſtans duca-
tur;
quod faciet ſectionem, in cy lindro quidem circulum
æqualem iis, qui ſunt in baſibus, ut demonſtrauit Serenus
in libro cylindricorum, propoſitione quinta:
in cylindri
uero portione ellipſim æqualem, &
ſimilem eis, quæ ſunt
in oppoſitis planis, quod nos
Figure: /permanent/library/4E7V2WGH/figures/0130-01 not scanned
[Figure 86]
demonſtrauimus in commen
tariis in librum Archimedis
de conoidibus, &
ſphæroidi-
bus.
Dico centrum grauita-
tis cylindri, uel cylindri por-
tionis eſſe in plano e f.
Si enĩ
fieri poteſt, fit centrum g:
&
ducatur g h ipſi a d æquidi-
ſtans, uſque ad e f planum.
Itaque linea a e continenter
diuiſa bifariam, erit tandem
pars aliqua ipſius k e, minor
g h.
Diuidantur ergo lineæ
a e, e d in partes æquales ipſi
k e:
& per diuiſiones plana ba
ſibus æquidiſtantia ducãtur.

erunt iam ſectiones, figuræ æ-
quales, &
ſimiles eis, quæ ſunt
in baſibus:
atque erit cylindrus in cylindros diuiſus: & cy
lindri portio in portiones æquales, &
ſimiles ipſi k f. reli-
qua ſimiliter, ut ſuperius in priſmate concludentur.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index