Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[131. Figure]
[132. Figure]
[133. Figure]
[134. Figure]
[135. Figure]
[136. Figure]
[137. Figure]
[138. Figure]
[139. Figure]
[140. Figure]
[141. Figure]
[142. Figure]
[143. Figure]
[144. Figure]
[145. Figure]
[146. Figure]
[147. Figure]
[148. Figure]
[149. Figure]
[150. Figure]
[151. Figure]
< >
page |< < of 213 > >|
FED. COMMANDINI
ad priſma a b c e f g. quare linea s y ad y t eandem propor-
tionem habet, quam priſma a d c e h g ad priſma a b c e f g.
Sed priſmatis a b c e f g centrum grauitatis eſts: & priſma-
tis a d c e h g centrum t.
magnitudinis igitur ex his compo
ſitæ, hoc eſt totius priſmatis a g centrum grauitatis eſt pun
ctum y;
medium ſcilicet axis u x, qui oppoſitorum plano-
rum centra coniungit.
Rurſus ſit priſma baſim habens pentagonum a b c d e:
& quod ei opponitur ſit f g h _K_ l: ſec enturq; a f, b g, c h,
d _k_, el bifariam:
& per diuiſiones ducto plano, ſectio ſit pẽ
tagonũ m n o p q.
deinde iuncta e b per lineas le, e b aliud
planum ducatur, diuidẽs priſ
Figure: /permanent/library/4E7V2WGH/figures/0138-01 not scanned
[Figure 92]
ma a k in duo priſmata, in priſ
ma ſcilicet al, cuius plana op-
poſita ſint triangula a b e f g l:
& in prima b _k_ cuius plana op
poſita ſint quadrilatera b c d e
g h _k_ l.
Sint autem triangulo-
rum a b e, f g l centra grauita
tis puncta r ſ:
& b c d e, g h _k_ l
quadrilaterorum centra tu:

iunganturq;
r s, t u o ccurren-
tes plano m n o p q in punctis
x y.
& itidem iungãtur r t, ſu,
x y.
erit in linea r t cẽtrum gra
uitatis pentagoni a b c d e;

quod ſit z:
& in linea ſu cen-
trum pentagoni f g h k l:
ſit au
tem χ:
& ducatur z χ, quæ di-
cto plano in χ occurrat.
Itaq;
punctum x eſt centrum graui
tatis trianguli m n q, ac priſ-
matis al:
& y grauitatis centrum quadrilateri n o p q, ac
priſmatis b k.
quare y centrum erit pentagoni m n o p q. &

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index