Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[141. Figure]
[142. Figure]
[143. Figure]
[144. Figure]
[145. Figure]
[146. Figure]
[147. Figure]
[148. Figure]
[149. Figure]
[150. Figure]
[151. Figure]
< >
page |< < (19) of 213 > >|
DE CENTRO GRAVIT. SOLID.
Figure: /permanent/library/4E7V2WGH/figures/0149-01 not scanned
[Figure 102]

THEOREMA X. PROPOSITIO XIIII.

Cuiuslibet pyramidis, & cuiuslibet coni, uel
coni portionis, centrum grauitatis in axe cõſiſtit.
SIT pyramis, cuius baſis triangulum a b c: & axis d e.
Dico in linea d e ipſius grauitatis centrum ineſſe. Si enim
fieri poteſt, ſit centrum f:
& ab f ducatur ad baſim pyrami
dis linea f g, axi æquidiſtans:
iunctaq; e g ad latera trian-
guli a b c producatur in h.
quam uero proportionem ha-
bet linea h e ad e g, habeat pyramis ad aliud ſolidum, in
quo K:
inſcribaturq; in pyramide ſolida figura, & altera cir
cumſcribatur ex priſmatibus æqualem habentibus altitu-
dinem, ita ut circumſcripta inſcriptam exuperet magnitu-
dine, quæ ſolido _k_ ſit minor.
Et quoniam in pyramide pla
num baſi æquidiſtans ductum ſectionem facit figuram ſi-
milem ei, quæ eſt baſis;
centrumq; grauitatis in axe haben
tem:
erit priſmatis s t grauitatis centrũ in linear q; priſ-
matis u x centrum in linea q p;
priſmatis y z in linea p o;
priſmatis η θ in l_i_nea o n;
priſmatis λ μ in linea n m; priſ-
matis ν π in m l;
& denique priſmatis ρ σ in l e. quare to-

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index