Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
< >
page |< < of 213 > >|
FED. COMMANDINI
Dico eas proportion ales eſſe in proportione, quæ eſt la-
teris a b adlatus d e, itaut earum maior ſit a b c e, me-
dia a d c e, &
minor d e f c. Quoniam enim lineæ d e,
a b æquidiſtant;
& interipſas ſunt triangula a b e, a d e;
erit triangulum a b e
Figure: /permanent/library/4E7V2WGH/figures/0172-01 not scanned
[Figure 126]
1. ſextí.ad triangulum a d e,
ut linea a b ad lineam
d e.
ut autem triangu
lum a b e ad triangu-
lum a d e, ita pyramis
5. duodeci
mi.
a b e c ad pyramidem
a d e c:
habent enim
altitudinem eandem,
quæ eſt à puncto c ad
planum, in quo qua-
drilaterum a b e d.
er-
11. quinti.go ut a b ad d e, ita pyramis a b e c ad pyramidem a d e c.
Rurſus quoniam æquidiſtantes ſunt a c, d f; erit eadem
ratione pyramis a d c e ad pyramidem c d f e, ut a c ad
4 ſexti.d f.
Sed ut a c a l d f, ita a b ad d e, quoniam triangula
a b c, d e f ſimilia ſunt, ex nona huius.
quare ut pyramis
a b c e ad pyramidem a d c e, ita pyramis a d c e ad ipſam
d e f c.
fruſtum igitur a b c d e f diuiditur in tres pyramides
proportionales in ea proportione, quæ eſt lateris a b ad d e
latus, &
earum maior eſt c a b e, media a d c e, & minor
d e f c.
quod demonſtrare oportebat.

PROBLEMA V. PROPOSITIO XXIIII.

Qvodlibet fruſtum pyramidis, uel coni,
uel coni portionis, plano baſi æquidiſtanti ita ſe-
care, ut ſectio ſit proportionalis inter maiorem,
&
minorem baſim.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index