Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[21. ARCHIMEDIS DE IIS QVAE VEHVNTVR IN AQVA LIBER SECVNDVS. CVM COMMENTARIIS FEDERICI COMMANDINI VRBINATIS. PROPOSITIO I.]
[22. PROPOSITIO II.]
[23. COMMENTARIVS.]
[24. PROPOSITIO III.]
[25. PROPOSITIO IIII.]
[26. COMMENTARIVS.]
[27. PROPOSITIO V.]
[28. COMMENTARIVS.]
[29. PROPOSITIO VI.]
[30. COMMENTARIVS.]
[31. LEMMAI.]
[32. LEMMA II.]
[33. LEMMA III.]
[34. LEMMA IIII.]
[35. PROPOSITIO VII.]
[36. PROPOSITIO VIII.]
[37. COMMENTARIVS.]
[38. PROPOSITIO IX.]
[39. COMMENTARIVS.]
[40. PROPOSITIO X.]
[41. COMMENTARIVS.]
[42. LEMMA I.]
[43. LEMMA II.]
[44. LEMMA III.]
[45. LEMMA IIII.]
[46. LEMMA V.]
[47. LEMMA VI.]
[48. II.]
[49. III.]
[50. IIII.]
< >
page |< < (8) of 213 > >|
DE IIS QVAE VEH. IN AQVA.
neas; neutra alteri obſistit, quo minus moueatur; ídq; continenter
fiat, dum portio in rectum fuerit conſtituta:
tunc enim utrarumque
magnitudinum grauitatis centra in unam, eandémq;
perpendicula-
rum conueniunt, uidelicet in axem portionis:
& quanto conatu, im
petùue ea, quæ in humido eſt ſurſum, tanto quæ extra humidum de-
orſum per eandem lineam contendit.
quare cum altera alteram non
ſuperet, non amplius mouebitur portio;
ſed conſiſtet, manebítq; in
eodem ſemper ſitu;
niſi forte aliqua cauſſa extrinſecus acceſſerit.

PROPOSITIO IX.

Qvòd ſi figura humido leuior in humidum
demittatur, ita ut baſis tota ſit in humido;
inſide
bit recta, ita ut axis ipſius ſecundum perpendicu
larem conſtituatur.
INTELLIGATVR enim magnitudo aliqua, qua-
lis dicta eſt, in humidum demiſſa:
& intelligatur planum
per axem portionis, &
per centrum terræ ductum: ſitq; ſu
perficiei quidem humidi ſectio a b c d circunferentia;
figu
ræ autem ſectio circun ferentia e f h:
& ſit e h recta linea:
& axis portionis f t. Si igitur fieri poteſt, non ſit f t ſecun
dum perpendicularem.
Figure: /permanent/library/4E7V2WGH/figures/0027-01 not scanned
[Figure 15]
Demonſtrandum eſt non
manerefiguram;
ſed in re
ctum reſtitui.
eſt autem
centrum ſphæræ in linea
f t:
rurſus enim ſit figu-
ra primo maior dimidia
ſphæra:
& ſphæræ centrũ
in dimidia ſphæra ſit pun-
ctum t;
in minore portione p; in maiori uero ſit _k_: & per
_k_, &
terræ centrum l ducatur _k_ l. Itaque figura quæ eſt
A

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index