Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[41. Figure]
[42. Figure]
[43. Figure]
[44. Figure]
[45. Figure]
[46. Figure]
[47. Figure]
[48. Figure]
[49. Figure]
[50. Figure]
[51. Figure]
[52. Figure]
[53. Figure]
[54. Figure]
[55. Figure]
[56. Figure]
[57. Figure]
[58. Figure]
[59. Figure]
[60. Figure]
[61. Figure]
[62. Figure]
[63. Figure]
[64. Figure]
[65. Figure]
[66. Figure]
[67. Figure]
[68. Figure]
[69. Figure]
[70. Figure]
< >
page |< < of 213 > >|
ARCHIMEDIS
pla eſt, aut minor, quàm dupla. Sit autem p t dupla t i. erit
centrum grauitatis eius, quod eſt in humido, punctum t.
Itaque iuncta t f producatur; ſitq; eius, quod extra humi
dum grauitatis centrum g:
& à puncto b ad rectos angu-
los ipſi n o ducatur b r.
Quòd cum p i quidem ſit æqui-
diſtans diametro n o:
br autem ad diametrum perpendi
cularis.
& f b æqualis ei, quæ uſque ad axem: perſpicuum
eſt f r productam æquales facere angulos cum ea, quæ ſe-
ctionem a p o l in puncto p contingit.
quare & cum a s:
&
cum ſuperficie humidi. lineæ autem ductæ per tg æqui-
diſtantes ipſi f r, erunt &

Figure: /permanent/library/4E7V2WGH/figures/0046-01 not scanned
[Figure 26]
ad humidi ſuperficiẽ per-
pendiculares:
& ſolidi
a p o l magnitudo, quæ ẽ
intra humidum ſurſum fe
retur ſecundum perpen-
dicularem per t ductam;
quæ uero extra humidum
ſecundum eam, quæ per g
deorſum feretur.
reuolue
Etur ergo ſolidum a p o l:
& baſis ipſius nullo modo
humidi ſuperficiem con-
tinget.
At ſi pi lineam k ω
non ſecet, ut in ſecunda
figura;
manifeſtum eſt punctum t, quod eſt centrum gra-
uitatis demerſæ portionis, cadere inter p &
i: & reliqua
ſimiliter demonſtrabuntur.

COMMENTARIVS.

Demonſtrandum eſt non manere ipſam portionem, ſed
Areuolui ita, ut baſis nullo modo ſuperficiem humidi con-
tingat.
] _Hæcnos addidimus tanquam ab interprete omiſſa_.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index