Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of contents

< >
[41. COMMENTARIVS.]
[42. LEMMA I.]
[43. LEMMA II.]
[44. LEMMA III.]
[45. LEMMA IIII.]
[46. LEMMA V.]
[47. LEMMA VI.]
[48. II.]
[49. III.]
[50. IIII.]
[51. V.]
[52. DEMONSTRATIO SECVNDAE PARTIS.]
[53. COMMENTARIVS.]
[54. DEMONSTRATIO TERTIAE PARTIS.]
[55. COMMENTARIVS.]
[56. DEMONSTRATIO QVARTAE PARTIS.]
[57. DEMONSTRATIO QVINT AE PARTIS.]
[58. FINIS LIBRORVM ARCHIMEDIS DE IIS, QVAE IN AQVA VEHVNTVR.]
[59. FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORV M.]
[60. CVM PRIVILEGIO IN ANNOS X. BONONIAE, Ex Officina Alexandri Benacii. M D LXV.]
[61. ALEXANDRO FARNESIO CARDINALI AMPLISSIMO ET OPTIMO.]
[62. FEDERICI COMMANDINI VRBINATIS LIBER DE CENTRO GRAVITATIS SOLIDORVM. DIFFINITIONES.]
[63. PETITIONES.]
[64. THEOREMA I. PROPOSITIO I.]
[65. THEOREMA II. PROPOSITIO II.]
[66. THE OREMA III. PROPOSITIO III.]
[67. THE OREMA IIII. PROPOSITIO IIII.]
[68. ALITER.]
[69. THEOREMA V. PROPOSITIO V.]
[70. COROLLARIVM.]
< >
page |< < of 213 > >|
ARCHIMEDIS
pla eſt, aut minor, quàm dupla. Sit autem p t dupla t i. erit
centrum grauitatis eius, quod eſt in humido, punctum t.
Itaque iuncta t f producatur; ſitq; eius, quod extra humi
dum grauitatis centrum g:
& à puncto b ad rectos angu-
los ipſi n o ducatur b r.
Quòd cum p i quidem ſit æqui-
diſtans diametro n o:
br autem ad diametrum perpendi
cularis.
& f b æqualis ei, quæ uſque ad axem: perſpicuum
eſt f r productam æquales facere angulos cum ea, quæ ſe-
ctionem a p o l in puncto p contingit.
quare & cum a s:
&
cum ſuperficie humidi. lineæ autem ductæ per tg æqui-
diſtantes ipſi f r, erunt &

Figure: /permanent/library/4E7V2WGH/figures/0046-01 not scanned
[Figure 26]
ad humidi ſuperficiẽ per-
pendiculares:
& ſolidi
a p o l magnitudo, quæ ẽ
intra humidum ſurſum fe
retur ſecundum perpen-
dicularem per t ductam;
quæ uero extra humidum
ſecundum eam, quæ per g
deorſum feretur.
reuolue
Etur ergo ſolidum a p o l:
& baſis ipſius nullo modo
humidi ſuperficiem con-
tinget.
At ſi pi lineam k ω
non ſecet, ut in ſecunda
figura;
manifeſtum eſt punctum t, quod eſt centrum gra-
uitatis demerſæ portionis, cadere inter p &
i: & reliqua
ſimiliter demonſtrabuntur.

COMMENTARIVS.

Demonſtrandum eſt non manere ipſam portionem, ſed
Areuolui ita, ut baſis nullo modo ſuperficiem humidi con-
tingat.
] _Hæcnos addidimus tanquam ab interprete omiſſa_.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index