Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
< >
page |< < of 213 > >|
ARCHIMEDIS
q o; uidelicet ut h g ad f p: quod proxime demonſtr atum eſt. At
2. lem:ueroipſi g q æquales ſunt duæ lineæ ſimul ſumptæ qb, hoc eſt h b,
4. lem.&
b g: atque ipſi q a æqualis eſt h f. Sienim ab æqualibus h b,
bq, æqualia fb,
Figure: /permanent/library/4E7V2WGH/figures/0052-01 not scanned
[Figure 32]
ba demantur, re
manentia æqua-
lia erunt.
ergo
dempta h g ex
duabus lineis h
b, h g, relinqui-
tur dupla ipſius
b g;
hoc eſt o h:
& dempta p f ex
f h, reliqua est
b p.
quare o h
19. quintiad h p, eſt ut g q
ad q a.
Sed ut
g q ad q a, ita
h q ad q o;
hoc
eſt h g ad n c:
& ut o h ad h p,
15. quin-
ti.
ita g b ad c k.
eſt
cnim o h dupla
g b, &
h p item
dupla gf;
hoc eſt
c k.
eandem igitur proportionem habet h g ad n c, qnam g b ad
c k:
& permutando n c ad c k eandem habet, quam b g ad g b.
Sumatur deinde aliud quod uis punctum in ſectum in ſectione,
quod ſit s:
& per s duæ lineæ ducantur: st quidem
æquidistans ipſi db, diametrumque in puncto t ſecans;
s u uero æquidistans ac, & ſecans c e in u. Dico u c
ad ck maiorem proportionem habere, quamtg ad gb.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index