Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

#### Table of figures

< >
[61. Figure]
[62. Figure]
[63. Figure]
[64. Figure]
[65. Figure]
[66. Figure]
[67. Figure]
[68. Figure]
[69. Figure]
[70. Figure]
[71. Figure]
[72. Figure]
[73. Figure]
[74. Figure]
[75. Figure]
[76. Figure]
[77. Figure]
[78. Figure]
[79. Figure]
[80. Figure]
[81. Figure]
[82. Figure]
[83. Figure]
[84. Figure]
[85. Figure]
[86. Figure]
[87. Figure]
[88. Figure]
[89. Figure]
[90. Figure]
< >
page |< < of 213 > >|
ARCHIMEDIS
dem circa e z diametrum; a t d uero circa diametrum t h;
Kquæ ſimiles ſint portioni a b l. tranſibit igitur a e i coni
Lſectio per _K_:
& quæ ab r ducta eſt perpendicularis ad b d,
ipſam a e i ſecabit.
ſecet in punctis y g: & per y g ducan
tur ipſi b d æquidiſtantes p y q, o g n, quæ ſecent a t d in
f x.
ducantur poſtremo, & p χ, o φ contingentes ſectionẽ
a p o l in punctis p o.
cũ ergo tres portiones ſint a p o l,
Ma e i, a t d, contentæ rectis lineis, &
rectangulorum cono-
rum ſectionibus;
rectæq, ſimiles, & inæquales, quæ contin
gunt ſe ſe ſuper unamquanque baſim:
à puncto autem n
ſurſum ducta ſit n x g o;
& à q ipſa q fy p: habebit o g ad
g x proportionem compoſitam ex proportione, quam ha
bet i l ad l a;
& ex proportione, quam a d habet ad d i.
Sed i l ad l a

[Figure 43]
habet eandem,
quinque.
ete-
nim c b ad b d
quĩdecim;
hoc
quinque:
& ut
Oc b ad b d, ita
&
ha-
rum autẽ d z,
Pd a duplæ ſunt
ipſæ l i, l a:
&
Qa d ad d i eã pro
portionem habet, quam quinque ad unum.
ſed proportio
compoſita ex proportione, quam habet duo ad quinque;