Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[71. Figure]
[72. Figure]
[73. Figure]
[74. Figure]
[75. Figure]
[76. Figure]
[77. Figure]
[78. Figure]
[79. Figure]
[80. Figure]
[81. Figure]
[82. Figure]
[83. Figure]
[84. Figure]
[85. Figure]
[86. Figure]
[87. Figure]
[88. Figure]
[89. Figure]
[90. Figure]
[91. Figure]
[92. Figure]
[93. Figure]
[94. Figure]
[95. Figure]
[96. Figure]
[97. Figure]
[98. Figure]
[99. Figure]
[100. Figure]
< >
page |< < of 213 > >|
ARCHIMEDIS

LEMMA II.

Sint duæ portionis ſimiles, contentæ rectis lineis, &
rectangulorum conorum ſectionibus;
a b c quidem ma-
ior, cuius diameter b d;
e f c uero minor, cuius diameter
fg:
aptenturq; inter ſeſe, ita ut maior minorem includat
&
ſint earum baſes a c, e c in eadem recta linea, ut idẽ
punctum c ſit utriuſque terminus:
ſumatur deinde in ſe
ctione a b c quodlibet punctum b:
& iungatur h c. Di
co lineam h c ad partem ſui ipſius, quæ inter c, &
ſe-
ctionem e f c interiicitur, eam proportionẽ habere, quam
habet a c ad c e.
_Dvcatvr_ b c, quæ tranſibit per f. quoniam enim portiones
ſimiles ſunt, diametri cú baſibus æquales continent angulos.
quare
æquidiſtant inter ſe ſe b d, f g:
éſtq; b d ad a c, ut f g ad e c:
& permu-
Figure: /permanent/library/4E7V2WGH/figures/0074-01 not scanned
[Figure 46]
tando b d ad
f g, ut a c ad
c e:
hoc eſt
15. quin-
ti.
ut earum di-
midiæ d c ad
c g.
ergo ex
antecedēti lé
mate ſequi-
tur lineá b c
per punctum
f tranſire.
Ducatur præ
terea à puncto h ad diametrum b d linea h K, æquidiſtans baſi
a c:
& iuncta k c, quæ diametrum f g ſecet in l; per l ducatur

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index