Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Table of figures

< >
[81. Figure]
[82. Figure]
[83. Figure]
[84. Figure]
[85. Figure]
[86. Figure]
[87. Figure]
[88. Figure]
[89. Figure]
[90. Figure]
[91. Figure]
[92. Figure]
[93. Figure]
[94. Figure]
[95. Figure]
[96. Figure]
[97. Figure]
[98. Figure]
[99. Figure]
[100. Figure]
[101. Figure]
[102. Figure]
[103. Figure]
[104. Figure]
[105. Figure]
[106. Figure]
[107. Figure]
[108. Figure]
[109. Figure]
[110. Figure]
< >
page |< < of 213 > >|
ARCHIMEDIS
ipſi my æquidiſtans. Demonſtrandum eſt portionem in
Ghumidum demiſſam, inclinatamq;
adeo, ut baſis ipſius nõ
contingat humidum, inclinatam conſiſtere ita, ut baſis ſu-
perficiem humidi nullo modo contingat:
& axis cum ea fa
ciat angulum angulo χ maiorem.
Demittatur enim in hu-
midum, conſiſtatq;
ita, ut baſis ipſius in uno puncto cõtin
gat humidi ſuperficiem:
& ſecta ipſa portione per axem,
plano ad humidi ſuperficiem recto;
ſuperficiei quidẽ por-
tionis ſectio ſit a p o l rectanguli coni ſectio:
ſuperficiei
humidi ſectio ſit a o:
axis autem portionis, & ſectionis dia
meter b d:
& ſecetur b d in punctis k r, ut dictum eſt: du-
Hcatur etiam p g æquidiſtans ipſi a o, quæ ſectionem a p o l
contingat in p:
atque ab eo puncto ducatur p t æquidiſtãs
ipſi b d;
& p s ad b d perpendicularis. Itaque quoniam
portio ad humidum in grauitate eam proportionem ha-
bet, quam qua-
Figure: /permanent/library/4E7V2WGH/figures/0086-01 not scanned
[Figure 52]
dratũ, quod fit
à linea χ ad qua
dratum b d:
quã
uero proportio
nem habet por-
tio ad humidũ,
eandem pars ip
ſius demerſa ha
bet ad totã por
tionẽ:
& quam
pars demerſa ad
totam, eandem
habet quadra-
tum t p ad b d
quadratum:
erit
linea ψ æqualis
ipſi t p.
quare & lineæ m n, p t; itemq, portiones a m q,
a p o inter ſe ſunt æquales.
Quòd cumin portionibus
K

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index