Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

#### Table of figures

< >
[31. Figure]
[32. Figure]
[33. Figure]
[34. Figure]
[35. Figure]
[36. Figure]
[37. Figure]
[38. Figure]
[39. Figure]
[40. Figure]
[41. Figure]
[42. Figure]
[43. Figure]
[44. Figure]
[45. Figure]
[46. Figure]
[47. Figure]
[48. Figure]
[49. Figure]
[50. Figure]
[51. Figure]
[52. Figure]
[53. Figure]
[54. Figure]
[55. Figure]
[56. Figure]
[57. Figure]
[58. Figure]
[59. Figure]
[60. Figure]
< >
page |< < of 213 > >|
ARCHIMEDIS

COMMENTARIVS.

_Sit ei, quæ uſque ad axem æqualis r h. ]_ Ita legendum eſt,
Anon r m, ut tranſlatio habet, quod ex ĳs, quæ ſequuntur, manifeſte
conſtare poteſt.
_Et oh dupla ipſius h m. ]_ In tranſlatione mendoſe legeba-
Btur, on dupla ipſius rm.
Hoc enim ſupra demonſtratum eſt. ] _In prima huius_.
C
Et quam proportionem habet demerſa portio ad totã,
] _Hoc loco in_
_tranſlatione non nulli deſider abantur, quænos reſtituimus.
Illud au_
_tem ab Archimede demonſtratum eſt in libro de conoidibus &
ſphæ_
_roidibus propoſitione_ 26.
_Quare p f non eſt minor ipſa m o. ]_ Nam ex decima quinti
quare neque
linea p f minor erit linea m o ex 22 ſexti.
_Nec b p item minor h o. ]_ Eſt enim ut p f ad p b, ita m o,
permutando, ut p f ad mo, ita b p, ad b o. ſed p f non
est minor m o, ut oſtenſiim cst.
ergo neque b p ipſa h o minor erit.
14. quinti
Si igitur ab h
G

[Figure 24]
rectos angulos ip
ſi n o, coibit cum
b p, atque inter
b &