Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

List of thumbnails

< >
11
11
12
12
13
13 (1)
14
14
15
15 (2)
16
16
17
17 (3)
18
18
19
19 (4)
20
20
< >
page |< < of 213 > >|
ARCHIMEDIS
ſuperficiem recto, ſit portionis ſectio anzg; ſuperficiei
humidi ez:
a-
Figure: /permanent/library/4E7V2WGH/figures/0098-01 not scanned
[Figure 63]
xis portionis,
&
ſectionis dia-
meter b d:
ſece-
turq, b d in pũ-
ctis _K_r, ſicuti
prius;
& duca-
tur n l quidem
ipſi e z æquidi-
ſtans, quæ con-
tingat ſectionẽ
a n z g in n;
&
n t æquidiſtans
ipſi b d;
n s ue-
ro ad b d perpẽ
dicularis.
Itaq;
quoniam portio ad humidum in grauitate eam proportio
nem habet, quam quadratum, quod fit à linea ψ ad quadra
tum b d:
erit ψ ipſi n t æqualis: quod ſimiliter demonſtrabi
tur, ut ſuperius.
quare & n t eſt æqualis ipſi u i. portiones
igitur a u q, e n z inter ſe ſunt æquales.
Et cum in æquali-
bus, &
ſimilibus portionibus a u q l, a n z g ductæ ſint a q
e z, quæ æquales portiones auferunt;
illa quidem ab extre
mitate baſis;
hæc autem non ab extremitate: minorem fa-
ciet acutum angulum cum portionis diametro, quæ ab ex-
tremitate baſis ducitur.
At triangulorum n l s, u ω c angu
lus ad l angulo ad ω maior eſt.
ergo b s minor erit, quam
b c:
& ſ r maior, quàm c r: ideoq; n χ maior, quam u h; &
χ t minor, quàm h i.
Quoniam igitur u y dupla eſt ipſius
y i;
conſtat n χ maiorem eſſe, quàm duplã χ t. Sit n m dupla
ipſius m t.
perſpicuũ eſt ex iis, quæ dicta ſunt, non manere
portionẽ;
ſed in clinari, donec eius baſis contingat ſuperfi-
ciem humidi:
contingat autem in puncto uno, ut patet in fi

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index