Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

List of thumbnails

< >
11
11
12
12
13
13 (1)
14
14
15
15 (2)
16
16
17
17 (3)
18
18
19
19 (4)
20
20
< >
page |< < of 213 > >|
ARCHIMEDIS
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="57">
          <p>
            <s xml:space="preserve">
              <pb file="0100" n="100" rhead="ARCHIMEDIS"/>
            quædam recta linea g i, ſectionibus a g q l, a x d interiecta,
              <lb/>
            & </s>
            <s xml:space="preserve">ipſi b d æquidiſtans; </s>
            <s xml:space="preserve">quæ mediam coni ſectionem in pun
              <lb/>
            cto h, & </s>
            <s xml:space="preserve">rectam
              <lb/>
              <anchor type="figure" xlink:label="fig-0100-01a" xlink:href="fig-0100-01"/>
            lineam r y in y
              <lb/>
            ſecet. </s>
            <s xml:space="preserve">demonſtra
              <lb/>
            bitur g h dupla
              <lb/>
            h i, quemadmo-
              <lb/>
            dum demonſtra
              <lb/>
            ta eſt o g ipſius
              <lb/>
            g x dupla. </s>
            <s xml:space="preserve">duca-
              <lb/>
            tur poſtea g ω cõ
              <lb/>
            tingens a g q l ſe
              <lb/>
            ctioneming: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            g c ad b d perpé
              <lb/>
            dicularis: </s>
            <s xml:space="preserve">iun-
              <lb/>
            ctaq; </s>
            <s xml:space="preserve">ai produ-
              <lb/>
            catur ad q. </s>
            <s xml:space="preserve">erit
              <lb/>
            ergo a i æqualis
              <lb/>
            i q: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">a q ipſi g ω
              <lb/>
            æquidiſtans. </s>
            <s xml:space="preserve">Demonſtrandũ eſt portionẽ in humidũ demiſ
              <lb/>
            fam, inclinatamq; </s>
            <s xml:space="preserve">adeo, ut baſis ipſius non cõtingat humi-
              <lb/>
            dũ, conſiſtere inclinatã ita, ut axis cum ſuperficie humidi
              <lb/>
            angulum faciat minorem angulo φ: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">baſis humidi ſuper-
              <lb/>
            ficiem nullo modo contingat. </s>
            <s xml:space="preserve">Demittatur enim in humi-
              <lb/>
            dum; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">conſiſtat ita, ut baſis ipſius in uno puncto contin-
              <lb/>
            gat ſuperficiem humidi. </s>
            <s xml:space="preserve">ſecta autem portione per axem,
              <lb/>
            plano ad humidi ſuperficiem recto, ſit portionis ſectio a n
              <lb/>
            z l rectanguli coni ſectio: </s>
            <s xml:space="preserve">ſuperficiei humidi a z: </s>
            <s xml:space="preserve">axis autẽ
              <lb/>
            portionis, & </s>
            <s xml:space="preserve">ſectionis diameter b d: </s>
            <s xml:space="preserve">ſeceturq; </s>
            <s xml:space="preserve">b d in pun-
              <lb/>
            ctis _K_ r, ut ſuperius dictum eſt: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ducatur n f quidem ipſi
              <lb/>
            a z æquidiſtans, & </s>
            <s xml:space="preserve">contingens coni ſectionem in pũcto n;
              <lb/>
            </s>
            <s xml:space="preserve">n t uero æquidiſtans ipſi b d: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">n s ad eandem perpendi-
              <lb/>
            cularis. </s>
            <s xml:space="preserve">Quoniam igitur portio ad humidum in grauitate,
              <lb/>
            cam habet proportionem, quam quadratum, quod fit à χ</s>
          </p>
        </div>
      </text>
    </echo>