Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
121 5
122
123 6
124
125 7
126
127 8
128
129 9
130
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="66">
          <p>
            <s xml:space="preserve">
              <pb file="0122" n="122" rhead="FED. COMMANDINI"/>
            teſt in portione, quæ recta linea & </s>
            <s xml:space="preserve">obtuſianguli coni ſe-
              <lb/>
            ctione, ſeu hyperbola continetur.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="2">
            <handwritten xlink:label="hd-0121-02" xlink:href="hd-0121-02a"/>
          </div>
        </div>
        <div type="section" level="1" n="67">
          <head xml:space="preserve">THE OREMA IIII. PROPOSITIO IIII.</head>
          <p>
            <s xml:space="preserve">
              <emph style="sc">In</emph>
            circulo & </s>
            <s xml:space="preserve">ellipſiidem eſt figuræ & </s>
            <s xml:space="preserve">graui-
              <lb/>
            tatis centrum.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">SIT circulus, uel ellipſis, cuius centrum a. </s>
            <s xml:space="preserve">Dico a gra-
              <lb/>
            uitatis quoque centrum eſſe. </s>
            <s xml:space="preserve">Si enim fieri poteſt, ſit b cen-
              <lb/>
            trum grauitatis: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iuncta a b extra figuram in c produca
              <lb/>
            tur: </s>
            <s xml:space="preserve">quam uero proportionem habetlinea c a ad a b, ha-
              <lb/>
            beat circulus a ad alium circulum, in quo d; </s>
            <s xml:space="preserve">uel ellipſis ad
              <lb/>
            aliam ellipſim: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">in circulo, uel ellipſi ſigura rectilinea pla-
              <lb/>
            ne deſcribatur adeo, ut tandem relinquantur portiones
              <lb/>
            quædam minores circulo, uel ellipſid; </s>
            <s xml:space="preserve">quæ figura ſit e f g
              <lb/>
            h _k_ l m n. </s>
            <s xml:space="preserve">Illud uero in circulo fieri poſſe ex duodecimo
              <lb/>
            elementorum libro, propoſitione ſecunda manifeſte con-
              <lb/>
            ſtat; </s>
            <s xml:space="preserve">at in ellipſi nos demonſtra-
              <lb/>
              <anchor type="figure" xlink:label="fig-0122-01a" xlink:href="fig-0122-01"/>
            uinius in commentariis in quin-
              <lb/>
            tam propoſitionem Archimedis
              <lb/>
            de conoidibus, & </s>
            <s xml:space="preserve">ſphæroidibus.
              <lb/>
            </s>
            <s xml:space="preserve">erit igitur a centrum grauitatis
              <lb/>
            ipſius figuræ, quod proxime oſtē
              <lb/>
            dimus. </s>
            <s xml:space="preserve">Itaque quoniam circulus
              <lb/>
            a ad circulum d; </s>
            <s xml:space="preserve">uel ellipſis a ad
              <lb/>
            ellipſim d eandem proportionē
              <lb/>
            habet, quam linea c a ad a b: </s>
            <s xml:space="preserve">
              <lb/>
            portiones uero ſunt minores cir
              <lb/>
              <anchor type="note" xlink:label="note-0122-01a" xlink:href="note-0122-01"/>
            culo uel ellipſi d: </s>
            <s xml:space="preserve">habebit circu-
              <lb/>
            lus, uel ellipſis ad portiones ma-
              <lb/>
            iorem proportionem, quàm c a
              <lb/>
              <anchor type="note" xlink:label="note-0122-02a" xlink:href="note-0122-02"/>
            ad a b: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">diuidendo figura recti-
              <lb/>
            linea e f g h _k_ l m n ad portiones</s>
          </p>
        </div>
      </text>
    </echo>