Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
121 5
122
123 6
124
125 7
126
127 8
128
129 9
130
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="69">
          <pb file="0126" n="126" rhead="FED. COMMANDINI"/>
          <p>
            <s xml:space="preserve">Itaque quoniam duæ lineæ K l, l m ſe ſe tangentes, duabus
              <lb/>
            lineis ſe ſe tangentibus a b, b c æquidiſtant; </s>
            <s xml:space="preserve">nec ſunt in eo-
              <lb/>
            dem plano: </s>
            <s xml:space="preserve">angulus
              <emph style="sc">K</emph>
            l m æqualis eſt angulo a b c: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ita an
              <lb/>
              <anchor type="note" xlink:label="note-0126-01a" xlink:href="note-0126-01"/>
            gulus l m
              <emph style="sc">K</emph>
            , angulo b c a, & </s>
            <s xml:space="preserve">m
              <emph style="sc">K</emph>
            lipſi c a b æqualis prob abi
              <lb/>
            tur. </s>
            <s xml:space="preserve">triangulum ergo
              <emph style="sc">K</emph>
            l m eſt æquale, & </s>
            <s xml:space="preserve">ſimile triang ulo
              <lb/>
            a b c. </s>
            <s xml:space="preserve">quare & </s>
            <s xml:space="preserve">triangulo d e f. </s>
            <s xml:space="preserve">Ducatur linea c g o, & </s>
            <s xml:space="preserve">per ip
              <lb/>
            ſam, & </s>
            <s xml:space="preserve">per c f ducatur planum ſecans priſma, cuius & </s>
            <s xml:space="preserve">paral
              <lb/>
            lelogrammi a e communis ſectio ſit o p q. </s>
            <s xml:space="preserve">tranſibit linea
              <lb/>
            f q per h, & </s>
            <s xml:space="preserve">m p per n. </s>
            <s xml:space="preserve">nam cum plana æquidiſtantia ſecen
              <lb/>
            tur à plano c q, communes eorum ſectiones c g o, m p, f q
              <lb/>
            ſibi ipſis æquidiſtabunt. </s>
            <s xml:space="preserve">Sed & </s>
            <s xml:space="preserve">æquidiſtant a b,
              <emph style="sc">K</emph>
            l, d e. </s>
            <s xml:space="preserve">an-
              <lb/>
            guli ergo a o c,
              <emph style="sc">K</emph>
            p m, d q f inter ſe æquales ſunt: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſunt
              <lb/>
              <anchor type="note" xlink:label="note-0126-02a" xlink:href="note-0126-02"/>
            æquales qui ad puncta a k d conſtituuntur. </s>
            <s xml:space="preserve">quare & </s>
            <s xml:space="preserve">reliqui
              <lb/>
            reliquis æquales; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">triangula a c o, _K_ m p, d f q inter ſe ſimi
              <lb/>
            lia erunt. </s>
            <s xml:space="preserve">Vtigitur ca ad a o, ita fd ad d q: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">permutando
              <lb/>
              <anchor type="note" xlink:label="note-0126-03a" xlink:href="note-0126-03"/>
            ut c a ad fd, ita a o ad d q. </s>
            <s xml:space="preserve">eſt autem c a æqualis fd. </s>
            <s xml:space="preserve">ergo & </s>
            <s xml:space="preserve">
              <lb/>
            a o ipſi d q. </s>
            <s xml:space="preserve">eadem quoque ratione & </s>
            <s xml:space="preserve">a o ipſi _K_ p æqualis
              <lb/>
            demonſtrabitur. </s>
            <s xml:space="preserve">Itaque ſi triangula, a b c, d e f æqualia & </s>
            <s xml:space="preserve">
              <lb/>
            ſimilia inter ſe aptétur,
              <lb/>
              <anchor type="figure" xlink:label="fig-0126-01a" xlink:href="fig-0126-01"/>
            cadet linea f q in lineam
              <lb/>
            c g o. </s>
            <s xml:space="preserve">Sed & </s>
            <s xml:space="preserve">centrũ gra
              <lb/>
              <anchor type="note" xlink:label="note-0126-04a" xlink:href="note-0126-04"/>
            uitatis h in g centrũ ca-
              <lb/>
            det. </s>
            <s xml:space="preserve">trãſibit igitur linea
              <lb/>
            f q per h: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">planum per
              <lb/>
            c o & </s>
            <s xml:space="preserve">c f ductũ per axẽ
              <lb/>
            g h ducetur: </s>
            <s xml:space="preserve">idcircoq; </s>
            <s xml:space="preserve">li
              <lb/>
            neam m p etiã per n trã
              <lb/>
            ſire neceſſe erit. </s>
            <s xml:space="preserve">Quo-
              <lb/>
            niam ergo ſh, c g æqua-
              <lb/>
            les ſunt, & </s>
            <s xml:space="preserve">æquidiſtãtes:
              <lb/>
            </s>
            <s xml:space="preserve">itemq; </s>
            <s xml:space="preserve">h q, g o; </s>
            <s xml:space="preserve">rectæ li-
              <lb/>
            neæ, quæ ipſas cónectũt
              <lb/>
            c m f, g n h, o p q æqua-
              <lb/>
            les & </s>
            <s xml:space="preserve">æquidiſtãtes erũt.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>