Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
121 5
122
123 6
124
125 7
126
127 8
128
129 9
130
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
< >
page |< < (8) of 213 > >|
DE CENTRO GRAVIT. SOLID.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="69">
          <p>
            <s xml:space="preserve">
              <pb o="8" file="0127" n="127" rhead="DE CENTRO GRAVIT. SOLID."/>
            æquidiſtant autem c g o, m n p. </s>
            <s xml:space="preserve">ergo parallelogrãma ſunt
              <lb/>
            o n, g m, & </s>
            <s xml:space="preserve">linea m n æqualis c g; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">n p ipſi g o. </s>
            <s xml:space="preserve">aptatis igi-
              <lb/>
            tur
              <emph style="sc">K</emph>
            l m, a b c triãgulis, quæ æqualia & </s>
            <s xml:space="preserve">ſimilia sũt; </s>
            <s xml:space="preserve">linea m p
              <lb/>
            in c o, & </s>
            <s xml:space="preserve">punctum n in g cadet. </s>
            <s xml:space="preserve">Quòd cũ g ſit centrum gra-
              <lb/>
            uitatis trianguli a b c, & </s>
            <s xml:space="preserve">n trianguli
              <emph style="sc">K</emph>
            l m grauitatis cen-
              <lb/>
            trum erit id, quod demonſtrandum relinquebatur. </s>
            <s xml:space="preserve">Simili
              <lb/>
            ratione idem contingere demonſtrabimus in aliis priſma-
              <lb/>
            tibus, ſiue quadrilatera, ſiue plurilatera habeant plana,
              <lb/>
            quæ opponuntur.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="2">
            <note position="left" xlink:label="note-0126-01" xlink:href="note-0126-01a" xml:space="preserve">10. unde
              <lb/>
            cimi</note>
            <note position="left" xlink:label="note-0126-02" xlink:href="note-0126-02a" xml:space="preserve">10. unde-
              <lb/>
            cimi</note>
            <note position="left" xlink:label="note-0126-03" xlink:href="note-0126-03a" xml:space="preserve">4. ſexti</note>
            <figure xlink:label="fig-0126-01" xlink:href="fig-0126-01a">
              <image file="0126-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0126-01"/>
            </figure>
            <note position="left" xlink:label="note-0126-04" xlink:href="note-0126-04a" xml:space="preserve">per 5. pe-
              <lb/>
            titionem
              <lb/>
            Archime
              <lb/>
            dis.</note>
          </div>
        </div>
        <div type="section" level="1" n="70">
          <head xml:space="preserve">COROLLARIVM.</head>
          <p>
            <s xml:space="preserve">Exiam demonſtratis perſpicue apparet, cuius
              <lb/>
            Iibet priſmatis axem, parallelogrammorum lat eri
              <lb/>
            bus, quæ ab oppoſitis planis ducũtur æquidiſtare.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
        <div type="section" level="1" n="71">
          <head xml:space="preserve">THEOREMA VI. PROPOSITIO VI.</head>
          <p>
            <s xml:space="preserve">Cuiuslibet priſmatis centrum grauitatis eſt in
              <lb/>
            plano, quod oppoſitis planis æquidiſtans, reli-
              <lb/>
            quorum planorum latera bifariam diuidit.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Sit priſma, in quo plana, quæ opponuntur ſint trian-
              <lb/>
            gula a c e, b d f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">parallelogrammorum latera a b, c d,
              <lb/>
            e f bifariam diuidãtur in punctis g h _K_: </s>
            <s xml:space="preserve">per diuiſiones au-
              <lb/>
            tem planum ducatur; </s>
            <s xml:space="preserve">cuius ſectio figura g h _K_. </s>
            <s xml:space="preserve">eritlinea
              <lb/>
              <anchor type="note" xlink:label="note-0127-01a" xlink:href="note-0127-01"/>
            g h æquidiſtans lineis a c, b d & </s>
            <s xml:space="preserve">h k ipſis c e, d f. </s>
            <s xml:space="preserve">quare ex
              <lb/>
            decimaquinta undecimi elementorum, planum illud pla
              <lb/>
            nis a c e, b d f æquidiſtabit, & </s>
            <s xml:space="preserve">ſaciet ſectionem figu-
              <lb/>
              <anchor type="note" xlink:label="note-0127-02a" xlink:href="note-0127-02"/>
            ram ipſis æqualem, & </s>
            <s xml:space="preserve">ſimilem, ut proxime demonſtra-
              <lb/>
            uimus. </s>
            <s xml:space="preserve">Dico centrum grauitatis priſmatis eſſe in plano
              <lb/>
            g h
              <emph style="sc">K</emph>
            . </s>
            <s xml:space="preserve">Si enim fieri poteſt, ſit eius centrum l: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ducatur
              <lb/>
            l m uſque ad planum g h
              <emph style="sc">K</emph>
            , quæ ipſi a b æquidiſtet.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>