Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="73">
          <p>
            <s xml:space="preserve">
              <pb file="0132" n="132" rhead="FED. COMMANDINI"/>
            centrum z: </s>
            <s xml:space="preserve">parallelogram mi a d, θ: </s>
            <s xml:space="preserve">parallelogrammi f g, φ:
              <lb/>
            </s>
            <s xml:space="preserve">parallelogrammi d h, χ: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
              <anchor type="figure" xlink:label="fig-0132-01a" xlink:href="fig-0132-01"/>
            parallelogrammi c g centrũ
              <lb/>
            ψ: </s>
            <s xml:space="preserve">atque erit ω punctum me
              <lb/>
            dium uniuſcuiuſque axis, ui
              <lb/>
            delicet eius lineæ, quæ oppo
              <lb/>
            ſitorum planorũ centra con
              <lb/>
            iungit. </s>
            <s xml:space="preserve">Dico ω centrum effe
              <lb/>
            grauitatis ipſius ſolidi. </s>
            <s xml:space="preserve">eſt
              <lb/>
            enim, ut demonſtrauimus,
              <lb/>
              <anchor type="note" xlink:label="note-0132-01a" xlink:href="note-0132-01"/>
            ſolidi a f centrum grauitatis
              <lb/>
            in plano K n; </s>
            <s xml:space="preserve">quod oppoſi-
              <lb/>
            tis planis a d, g f æ quidiſtans
              <lb/>
            reliquorum planorum late-
              <lb/>
            ra biſariam diuidit: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">fimili
              <lb/>
            rationeidem centrum eſt in plano o r, æ quidiſtante planis
              <lb/>
            a e, b f oppo ſitis. </s>
            <s xml:space="preserve">ergo in communi ipſorum fectione: </s>
            <s xml:space="preserve">ui-
              <lb/>
            delicet in linea y z. </s>
            <s xml:space="preserve">Sed eſt etiam in plano t u, quod quidẽ
              <lb/>
            y z ſecat in ω. </s>
            <s xml:space="preserve">Conſtat igitur centrum grauitatis ſolidi eſſe
              <lb/>
            punctum ω, medium ſcilicet axium, hoc eſt linearum, quæ
              <lb/>
            planorum oppoſitorum centra coniungunt.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0132-01" xlink:href="fig-0132-01a">
              <image file="0132-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0132-01"/>
            </figure>
            <note position="left" xlink:label="note-0132-01" xlink:href="note-0132-01a" xml:space="preserve">6. huius</note>
          </div>
          <p>
            <s xml:space="preserve">Sit aliud prima a f; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">in eo plana, quæ opponuntur, tri-
              <lb/>
            angula a b c, d e f: </s>
            <s xml:space="preserve">diuiſisq; </s>
            <s xml:space="preserve">bifariam parallelogrammorum
              <lb/>
            lateribus a d, b e, c f in punctis g h κ, per diuiſiones planũ
              <lb/>
            ducatur, quod oppoſitis planis æ quidiſtans faciet ſe ctionẽ
              <lb/>
            triangulum g h k æ quale, & </s>
            <s xml:space="preserve">ſimile ipſis a b c, d e f. </s>
            <s xml:space="preserve">Rurſus
              <lb/>
            diuidatur a b bifariam in l: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">iuncta c l per ipſam, & </s>
            <s xml:space="preserve">per
              <lb/>
            c _K_ f planum ducatur priſma ſecans, cuius, & </s>
            <s xml:space="preserve">parallelogrã
              <lb/>
            mi a e communis ſcctio ſit l m n. </s>
            <s xml:space="preserve">diuidet pun ctum m li-
              <lb/>
            neam g h bifariam; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ita n diuidet lineam d e: </s>
            <s xml:space="preserve">quoniam
              <lb/>
            triangula a c l, g k m, d f n æ qualia ſunt, & </s>
            <s xml:space="preserve">ſimilia, ut ſu pra
              <lb/>
              <anchor type="note" xlink:label="note-0132-02a" xlink:href="note-0132-02"/>
            demonſtrauimus. </s>
            <s xml:space="preserve">Iam ex iis, quæ tradita ſunt, conſtat cen
              <lb/>
            trum greuitatis priſmatis in plano g h k contineri. </s>
            <s xml:space="preserve">Dico
              <lb/>
            ipſum eſſe in linea k m. </s>
            <s xml:space="preserve">Si enim fieri poteſt, ſit o centrum;</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>