Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="73">
          <p>
            <s xml:space="preserve">
              <pb file="0136" n="136" rhead="FED. COMMANDINI"/>
            medis. </s>
            <s xml:space="preserve">ergo punctum v extra p riſima a f poſitum, centrũ
              <lb/>
            erit magnitudinis cõpoſitæ e x omnibus priſmatibus g z r,
              <lb/>
            r β t, t γ x, x δ k, k δ y, y u, u s, s α h, quod fieri nullo modo po
              <lb/>
            teſt. </s>
            <s xml:space="preserve">eſt enim ex diſſinitione centrum grauitatis ſolidæ figu
              <lb/>
            ræ intra ipſam poſitum, non extra. </s>
            <s xml:space="preserve">quare relinquitur, ut cẽ
              <lb/>
            trum grauitatis priſmatis ſit in linea K m. </s>
            <s xml:space="preserve">Rurſus b c bifa-
              <lb/>
            riam in ξ diuidatur: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ducta a ξ, per ipſam, & </s>
            <s xml:space="preserve">per lineam
              <lb/>
            a g d plan um ducatur; </s>
            <s xml:space="preserve">quod priſma ſecet: </s>
            <s xml:space="preserve">faciatq; </s>
            <s xml:space="preserve">in paral
              <lb/>
            lelogrammo b f ſectionem ξ π di uidet punctum π lineam
              <lb/>
            quoque c f bifariam: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">erit p lani eius, & </s>
            <s xml:space="preserve">trianguli g h K
              <lb/>
            communis ſectio g u; </s>
            <s xml:space="preserve">quòd p ũctum u in inedio lineæ h K
              <lb/>
              <anchor type="figure" xlink:label="fig-0136-01a" xlink:href="fig-0136-01"/>
            poſitum ſi t. </s>
            <s xml:space="preserve">Similiter demonſtrabimus centrum grauita-
              <lb/>
            tis priſm atis in ipſa g u ineſſe. </s>
            <s xml:space="preserve">ſit autem planorum c f n l,
              <lb/>
            a d π ξ communis ſectio linea ρ ο τ quæ quidem priſmatis
              <lb/>
            axis erit, cum tranſeat per centra grauitatis triangulorum
              <lb/>
            a b c, g h k, d e f, ex quartadecima eiuſdem. </s>
            <s xml:space="preserve">ergo centrum
              <lb/>
            grauitatis pri ſmatis a f eſt punctum σ, centrum ſcilicet</s>
          </p>
        </div>
      </text>
    </echo>