Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
181 35
182
183 36
184
185 37
186
187 38
188
189 39
190
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="73">
          <p>
            <s xml:space="preserve">
              <pb file="0140" n="140" rhead="FED. COMMANDINI"/>
            habeat circulus, uel ellipſis g h ad aliud ſpacium, in quo u:
              <lb/>
            </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">in circulo, uel ellipſi plane deſcribatur rectilinea figura,
              <lb/>
            ita ut tãdem relinquãtur portiones minores ſpacio u, quæ
              <lb/>
            ſit o p g q r s h t: </s>
            <s xml:space="preserve">deſcriptaq; </s>
            <s xml:space="preserve">ſimili figura in oppoſitis pla-
              <lb/>
            nis c d, f e, per lineas ſibi ipſis reſpondentes plana ducãtur. </s>
            <s xml:space="preserve">
              <lb/>
            Itaque cylindrus, uel cylindri portio diuiditur in priſma,
              <lb/>
            cuius quidem baſis eſt figura rectilinea iam dicta, centrum
              <lb/>
            que grauitatis punctum K: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">in multa ſolida, quæ pro baſi
              <lb/>
            bus habent relictas portiones, quas nos ſolidas portiones
              <lb/>
            appellabimus. </s>
            <s xml:space="preserve">cum igitur portiones ſint minores ſpacio
              <lb/>
            u, circulus, uel ellipſis g h ad portiones maiorem propor-
              <lb/>
            tionem habebit, quàm linea m k ad K l. </s>
            <s xml:space="preserve">fiat n k ad K l, ut
              <lb/>
            circulus uel ellipſis g h ad ipſas portiones. </s>
            <s xml:space="preserve">Sed ut circulus
              <lb/>
            uel ellipſis g h ad figuram rectilineam in ipſa deſcri-
              <lb/>
            ptam, ita eſt cylindrus uel cylindri portio c e ad priſma,
              <lb/>
            quod rectilineam figuram pro baſi habet, & </s>
            <s xml:space="preserve">altitudinem
              <lb/>
            æqualem; </s>
            <s xml:space="preserve">id, quod infra demonſtrabitur, ergo per conuer
              <lb/>
            ſionem rationis, ut circulus, uel ellipſis g h ad portiones re
              <lb/>
            lictas, ita cylindrus, uel cylindri portio c e ad ſolidas por-
              <lb/>
            tiones, quare cylindrus uel cylindri portio ad ſolidas por-
              <lb/>
            tiones eandem proportionem habet, quam linea n k a d _k_
              <lb/>
            & </s>
            <s xml:space="preserve">diuidendo priſma, cuius baſis eſt rectilinea figura ad ſo-
              <lb/>
            lidas portiones eandem proportionem habet, quam n lad
              <lb/>
            1 _k_. </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quoniam a cylindro uel cylindri portione, cuius gra-
              <lb/>
            uitatis centrum eſt l, aufertur priſma baſim habens rectili-
              <lb/>
            neam figurã, cuius centrũ grauitatis eſt _K_: </s>
            <s xml:space="preserve">reſiduæ magnitu
              <lb/>
            dinis ex ſolidis portionibus cõpoſitæ grauitatis cẽtrũ erit
              <lb/>
            in linea k l protracta, & </s>
            <s xml:space="preserve">in puncto n; </s>
            <s xml:space="preserve">quod eſt abſurdū. </s>
            <s xml:space="preserve">relin
              <lb/>
            quitur ergo, ut cẽtrum grauitatis cylindri; </s>
            <s xml:space="preserve">uel cylin dri por
              <lb/>
            tionis ſit punctũ k. </s>
            <s xml:space="preserve">quæ omnia demonſtrãda propoſuimus.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="5">
            <figure xlink:label="fig-0139-01" xlink:href="fig-0139-01a">
              <image file="0139-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0139-01"/>
            </figure>
            <note position="right" xlink:label="note-0139-01" xlink:href="note-0139-01a" xml:space="preserve">4. huius.</note>
          </div>
          <p>
            <s xml:space="preserve">At uero cylindrum, uel cylindri portionẽ ce
              <lb/>
            ad priſma, cuius baſis eſt rectilinea figura in ſpa-
              <lb/>
            cio g h deſcripta, & </s>
            <s xml:space="preserve">altitudo æqualis; </s>
            <s xml:space="preserve">eandem ha-</s>
          </p>
        </div>
      </text>
    </echo>