Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
111
112
113 1
114
115 2
116
117 3
118
119 4
120
121 5
122
123 6
124
125 7
126
127 8
128
129 9
130
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
< >
page |< < (5) of 213 > >|
1215DE CENTRO GRAVIT. SOLID. quo ſcilicet ln, om conueniunt. Poſtremo in figura
a p l q b r m s c t n u d x o y centrum grauitatis trian
guli pay, &
trapezii ploy eſtin linea a z: trapeziorum
uero lqxo, q b d x centrum eſtin linea z k:
& trapeziorũ
b r u d, r m n u in k φ:
& denique trapezii m s t n; & triangu
li s c t in φ c.
quare magnitudinis ex his compoſitæ centrū
in linea a c conſiſtit.
Rurſus trianguli q b r, & trapezii q l
m r centrum eſt in linea b χ:
trapeziorum l p s m, p a c s,
a y t c, y o n t in linea χ φ:
trapeziiq; o x u n, & trianguli
x d u centrum in ψ d.
totius ergo magnitudinis centrum
eſtin linea b d.
ex quo ſequitur, centrum grauitatis figuræ
a p l q b r m s c t n u d x o y eſſe punctū _K_, lineis ſcilicet a c,
b d commune, quæ omnia demonſtrare oportebat.
THE OREMA III. PROPOSITIO III.
Cuiuslibet portio-
77[Figure 77] nis circuli, &
ellipſis,
quæ dimidia non ſit
maior, centrum graui
tatis in portionis dia-
metro conſiſtit.
HOC eodem prorſus
modo demonſtrabitur,
quo in libro de centro gra
uitatis planorum ab Ar-
chimede demonſtratũ eſt,
in portione cõtenta recta
linea, &
rectanguli coni ſe
ctione grauitatis cẽtrum
eſſe in diametro portio-
nis.
Etita demonſtrari po
77[Handwritten note 7]

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index