Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
< >
page |< < (5) of 213 > >|
1215DE CENTRO GRAVIT. SOLID. quo ſcilicet ln, om conueniunt. Poſtremo in figura
a p l q b r m s c t n u d x o y centrum grauitatis trian
guli pay, &
trapezii ploy eſtin linea a z: trapeziorum
uero lqxo, q b d x centrum eſtin linea z k:
& trapeziorũ
b r u d, r m n u in k φ:
& denique trapezii m s t n; & triangu
li s c t in φ c.
quare magnitudinis ex his compoſitæ centrū
in linea a c conſiſtit.
Rurſus trianguli q b r, & trapezii q l
m r centrum eſt in linea b χ:
trapeziorum l p s m, p a c s,
a y t c, y o n t in linea χ φ:
trapeziiq; o x u n, & trianguli
x d u centrum in ψ d.
totius ergo magnitudinis centrum
eſtin linea b d.
ex quo ſequitur, centrum grauitatis figuræ
a p l q b r m s c t n u d x o y eſſe punctū _K_, lineis ſcilicet a c,
b d commune, quæ omnia demonſtrare oportebat.
THE OREMA III. PROPOSITIO III.
Cuiuslibet portio-
77[Figure 77] nis circuli, &
ellipſis,
quæ dimidia non ſit
maior, centrum graui
tatis in portionis dia-
metro conſiſtit.
HOC eodem prorſus
modo demonſtrabitur,
quo in libro de centro gra
uitatis planorum ab Ar-
chimede demonſtratũ eſt,
in portione cõtenta recta
linea, &
rectanguli coni ſe
ctione grauitatis cẽtrum
eſſe in diametro portio-
nis.
Etita demonſtrari po
77[Handwritten note 7]

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index