Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
< >
page |< < (45) of 213 > >|
DE CENTRO GRAVIT. SOLID.
ad punctum ω. Sed quoniam π circum ſcripta itidem alia
figura æquali interuallo ad portionis centrum accedit, ubi
primum φ applieuerit ſe ad ω, &
π ad punctũ ψ, hoc eſt ad
portionis centrum ſe applicabit.
quod fieri nullo modo
poſſe perſpicuum eſt.
non aliter idem abſurdum ſequetur,
ſi ponamus centrum portionis recedere à medio ad par-
tes ω;
eſſet enim aliquando centrum figuræ inſcriptæ idem
quod portionis centrũ.
ergo punctum e centrum erit gra
uitatis portionis a b c.
quod demonſtrare oportebat.
Quod autem ſupra demõſtratum eſt in portione conoi-
dis recta per figuras, quæ ex cylindris æqualem altitudi-
dinem habentibus conſtant, idem ſimiliter demonſtrabi-
mus per figuras ex cylindri portionibus conſtantes in ea
portione, quæ plano non ad axem recto abſcinditur.
ut
enim tradidimus in commentariis in undecimam propoſi
tionem libri Archimedis de conoidibus &
ſphæroidibus.
portiones cylindri, quæ æquali ſunt altitudine eam inter ſe
ſe proportionem habent, quam ipſarum baſes;
baſes autẽ
quæ ſunt ellipſes ſimiles eandem proportionem habere,
corol. 15
deconoi-
dibus &
ſphæroi-
dibus.
quam quadrata diametrorum eiuſdem rationis, ex corol-
lario ſeptimæ propoſitionis libri de conoidibus, &
ſphæ-
roidibus, manifeſte apparet.

THEOREMA XXIIII. PROPOSITIO XXX.

SI à portione conoidis rectanguli alia portio
abſcindatur, plano baſi æquidiſtante;
habebit
portio tota ad eam, quæ abſciſſa eſt, duplam pro
portio nem eius, quæ eſt baſis maioris portionis
ad baſi m minoris, uel quæ axis maioris ad axem
minoris.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index