Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
161 25
162
163 26
164
165 27
166
167 28
168
169 29
170
171 30
172
173 31
174
175 32
176
177 33
178
179 34
180
< >
page |< < of 213 > >|
202FED. COMMANDINI
ABSCINDATVR à portione conoidis rectanguli
a b c alia portio e b f, plano baſi æquidiſtante:
& eadem
portio ſecetur alio plano per axem;
ut ſuperficiei ſectio ſit
parabole a b c:
planorũ portiones abſcindentium rectæ
lineæ a c, e f:
axis autem portionis, & ſectionis diameter
b d;
quam linea e fin puncto g ſecet. Dico portionem co-
noidis a b c ad portionem e b f duplam proportionem ha-
bere eius, quæ eſt baſis a c ad baſim e f;
uel axis d b ad b g
axem.
Intelligantur enim duo coni, ſeu coni portiones
a b c, e b f, eãdem baſim, quam portiones conoidis, &
æqua
lem habentes altitudinem.
& quoniam a b c portio conoi
dis ſeſquialtera eſt coni, ſeu portionis coni a b c;
& portio
e b f coniſeu portionis coni e b feſt ſeſquialtera, quod de-
149[Figure 149] monſtrauit Archimedes in propoſitionibus 23, &
24 libri
de conoidibus, &
ſphæroidibus: erit conoidis portio ad
conoidis portionem, ut conus ad conum, uel ut coni por-
tio ad coni portionem.
Sed conus, uel coni portio a b c ad
conum, uel coni portionem e b f compoſitam proportio-
nem habet ex proportione baſis a c ad baſim e f, &
ex pro-
portione altitudinis coni, uel coni portionis a b c ad alti-
tudinem ipſius e b f, ut nos demonſtrauimus in com men-
tariis in undecimam propoſitionem eiuſdem libri A rchi-
medis:
altitudo autem ad altitudinem eſt, ut axis ad axem.
quod quidem in conis rectis perſpicuum eſt, in ſcalenis

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index