Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
41 15
42
43 16
44
45 17
46
47 18
48
49 19
50
51 20
52
53 21
54
55 22
56
57 23
58
59 24
60
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
< >
page |< < of 213 > >|
78ARCHIMEDIS& per conuer-
48[Figure 48] ſionem rationis
ut e b ad e g,
ita f d ad f h.
eſt autem ut a e
ad e b, ita c f
ad f d.
ex æqua
li igitur ut a e
ad e g, ita c f
ad f h.
A_liter_. Aptentur lineæ a b, c d inter ſe ſe, ita ut ad partes
a c angulum faciant;
& ſint a c in uno atque eodem puncto: deinde
iungantur d b, h g, fe.
cum igitur ſit ut a e ad e b, ita c f, hoc eſt
a f ad f d;
æquidiſtabit fe ipſi d b: & ſimiliter h g eidem d b
112. ſexti: æquidiſtabit:
quoniam a h ad h d eſt, ut a g ad g b. ergo f c, h g
2230. primi inter ſe ſe æquidiſtant:
& idcirco ut a e ad e g, ita a f; hoc eſt c f ad
fh.
quod demonſtrare oportebat.
LEMMA V.
Sint rurſus duæ portiones ſimiles, contentæ rectis li-
neis, &
rectangulorum conorum ſectionibus, ut in ſupe-
riori figura a b c, cuius diameter b d:
& e f c, cuius
diameter f g:
ducaturque à puncto e linea e h, diame-
tris b d, f g æquidiſtans, quæ ſectionem a b c in _k_ ſe-
cet:
& à puncto c ducatur c h contingens ſectionem
a b c in c conueniensque cumlinea e h in h, quæ ſectio
nem quoque e f c in eodem c puncto continget, ut demon
strabitur.
Dico lineam ductam ab ipſa c h uſque ad ſe-
ctionem e f c, ita ut lineæ e h æquidistet, in eandem pro
portionem diuidi à ſectione a b c;
in quam linea c a

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index