Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
61 25
62
63 26
64
65 27
66
67 22
68
69 29
70
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
< >
page |< < of 213 > >|
120FED. COMMANDINI triangulum m k φ triangulo n k φ. ergo anguli l z k, o z k,
m φ k, n φ k æquales ſunt, ac recti.
quòd cum etiam recti
ſint, qui ad k;
æquidiſtabunt lineæ l o, m n axi b d. & ita.
1128. primi. demonſtrabuntur l m, o n ipſi a c æquidiſtare. Rurſus ſi
iungantur a l, l b, b m, m c, c n, n d, d o, o a:
& bifariam di
uidantur:
à centro autem k ad diuiſiones ductæ lineæ pro-
trahantur uſque ad ſectionem in puncta p q r s t u x y:
& po
ſtremo p y, q x, r u, s t, q r, p s, y t, x u coniungantur.
Simili-
ter oſtendemus lineas
76[Figure 76] p y, q x, r u, s t axi b d æ-
quidiſtantes eſſe:
& q r,
p s, y t, x u æquidiſtan-
tesipſi a c.
Itaque dico
harum figurarum in el-
lipſi deſcriptarum cen-
trum grauitatis eſſe pũ-
ctum k, idem quod &
el
lipſis centrum.
quadri-
lateri enim a b c d cen-
trum eſt k, ex decima e-
iuſdem libri Archime-
dis, quippe cũ in eo om
nes diametri cõueniãt.
Sed in figura alb m c n
2213. Archi
medis.
d o, quoniam trianguli
alb centrum grauitatis
33Vltima. eſt in linea l e:
trapezijq́; a b m o centrum in linea e k: trape
zij o m c d in k g:
& trianguli c n d in ipſa g n: erit magnitu
dinis ex his omnibus conſtantis, uidelicet totius figuræ cen
trum grauitatis in linea l n:
& o b eandem cauſſam in linea
o m.
eſt enim trianguli a o d centrum in linea o h: trapezij
a l n d in h k:
trapezij l b c n in k f: & trianguli b m c in fm.
cum ergo figuræ a l b m c n d o centrum grauitatis ſit in li-
nea l n, &
in linea o m; erit centrum ipſius punctum k,

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index