Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
< >
page |< < of 213 > >|
118FED. COMMANDINI do in reliquis figuris æquilateris, & æquiangulis, quæ in cir-
culo deſcribuntur, probabimus cẽtrum grauitatis earum,
&
centrum circuli idem eſſe. quod quidem demonſtrare
oportebat.
Ex quibus apparet cuiuslibet figuræ rectilineæ
in circulo plane deſcriptæ centrum grauitatis idẽ
eſſe, quod &
circuli centrum.
Figuram in circulo plane deſcriptam appella-
11γνωρ@ μω@ mus, cuiuſmodi eſt ea, quæ in duodecimo elemen
torum libro, propoſitione ſecunda deſcribitur.
ex æqualibus enim lateribus, & angulis conſtare
perſpicuum eſt.
THEOREMA II. PROPOSITIO II.
Omnis figuræ rectilineæ in ellipſi plane deſcri-
ptæ centrum grauitatis eſt idem, quod ellipſis
centrum.
Quo modo figura rectilinea in ellipſi plane deſcribatur,
docuimus in commentarijs in quintam propoſitionem li-
bri Archimedis de conoidibus, &
ſphæroidibus.
Sit ellipſis a b c d, cuius maior axis a c, minor b d: iun-
ganturq́;
a b, b c, c d, d a: & bifariam diuidantur in pun-
ctis e f g h.
à centro autem, quod ſit k ductæ lineæ k e, k f,
k g, k h uſque ad ſectionem in puncta l m n o protrahan-
tur:
& iungantur l m, m n, n o, o l, ita ut a c ſecet li-
neas l o, m n, in z φ punctis, &
b d ſecet l m, o n in χ ψ.
erunt l k, k n linea una, itemq́ue linea unaipſæ m k, k o:
&
lineæ b a, c d æquidiſtabunt lineæ m o: & b c, a d ipſi
l n.
rurſus l o, m n axi b d æquidiſtabunt: & l

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index