Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
121 5
122
123 6
124
125 7
126
127 8
128
129 9
130
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
< >
page |< < (37) of 213 > >|
7337DE IIS QVAE VEH. IN AQVA.
Cum ergo tres portiones ſint a p o i, a ei, atd, con-
11M tentæ rectis lineis, &
rectãgulorum conorum ſectionibus;
rectæq; , ſimiles, & inæquales, quæ contingunt ſe ſe ſuper
unam quamque baſim.
] _Poſt ea uerba, ſuper unamquanque_
_baſim, in trans latione aliqua deſiderari uidentur.
Ad borum autem_
_demonſtrationem non nulla præmittere oportet, quæ etiam ad alia,_
_quæ ſequuntur, neceſſaria erunt._
LEMMA I.
Sit recta linea a b, quam ſecent duæ lineæ inter ſeſe
æquidiſtantes a c, d e, ita ut quam proportionem ba-
bet a b ad b d, eandern haheat a c ad de.
Dico li-
neam, quæ c b puncta coniungit, etiam per ipſum e
tr anſire.
SI enim fieri poteſt, non tranſeat pere, ſed nel ſupra, uel infra.
tranſeat primum infra, ut per f. erunt triangula a b c, d b f inter ſe
ſimilia.
quare ut a b ad b d, ita a c ad d f. ſed ut a b ad bd, ita
224. ſexti. erat a c ad d e.
ergo d f ipſi d e æqualis erit, uidelicet pars to-
339. quinti. ti, quod eſt
45[Figure 45] cbſurdum.
Idem ab-
ſurdum ſe
quetur, ſi
linea c b
ſupra e pú
ctum tran
ſire pona-
tur.
quare
c b etiam
per e ne-
ceſſario tranſibit.
quod oportebat demonſtrare.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index