Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

#### Page concordance

< >
Scan Original
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
< >
page |< < of 213 > >|
134FED. COMMANDINI t u, x y ipſi g h æquidiſtare. Et quoniam triangula, quæ
fiunt à lineis K y, y u, u s, s h æqualia ſuntinter ſe, &
ſimilia
triangulo K m h:
habebit triangulum K m h ad triangulũ
1119. ſexti K δ y duplam proportionem eius, quæ eſt lineæ k h ad K y.
ſed _K_ h poſita eſt quadrupla ipſius k y. ergo triangulum
κ m h ad triangulum _K_ δ y eãdem proportionem habebit,
quam ſexdecim ad unũ &
ad quatuor triangula k δ y, y u,
u s, s α h habebit eandem, quam fexdecim ad quatuor, hoc
eſt quam h K ad κ y:
& ſimiliter eandem habere demonſtra
bitur trian-
gulum κ m g
triãgula K δ
x, x γ t, t β r,
r z g.
quare
222. uel 121
quinti.
totum trian
gulum K g h
angula g z r,
r β t, t γ x, x δ
_K_, K δ y, y u,
u s, s α h ita
erit, ut h κ a d
k y, hoc eſt
ut h m ad m
q.
Si igitur in
triangulis a b c, d e f deſcribantur figuræ ſimiles ei, quæ de-
ſcripta eſt in g h K triangulo:
& per lineas ſibi reſp onden-
tes plana ducantur:
totum priſma a f diuiſum eritin tria
ſolida parallelepipeda y γ, u β, s z, quorum baſes ſunt æ qua
les &
ſimiles ipſis parallelogrammis y γ, u β, s z: & in octo
priſmata g z r, r β t, t γ x, x δ K, κ δ y, y u, u s, s α h:
quorum
item baſes æquales, &
ſimiles ſunt dictis triangulis; altitu-
do autem in omnibus, totius priſmatis altitudini æ qualis.