Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
< >
page |< < (36) of 213 > >|
DE CENTRO GRAVIT. SOLID.
grauitatis magnitudinis, quæ ex utriſque pyramidibus cõ
ſtat;
hoc eſt ipſius fruſti. Sed fruſti centrum eſt etiam in a-
xe g h.
ergo in puncto φ, in quo lineæ z u, g h conueniunt.
Itaque u φ ad φ z eam proportionem habet, quam pyramis
8. prim I
libri Ar-
chimedis
de cẽtro
grauita-
tis plano
runi
b c f e d ad pyramidem a b c d.
& componendo u z ad z φ
eam habet, quam fruſtum ad pyramidem a b c d.
Vtuero
u z ad z φ, ita o p ad p φ ob ſimilitudinem triangulorum,
u o φ, z p φ.
quare o p ad p φ eſt ut fruſtum ad pyramidem
a b c d.
ſed ita erat o p ad p q. æquales igitur ſunt p φ, p q: &
7. quinti.q φ unum atque idem punctum.
ex quibus ſequitur lineam
z u ſecare o p in q:
& propterea pũctum q ipſius fruſti gra-
uitatis centrum eſſe.
Sit fruſtum a g à pyramide, quæ quadrangularem baſim
habeat abſciſſum, cuius maior baſis a b c d, minor e f g h,
&
axis k l. diuidatur autem primũ _k_ l, ita ut quam propor-
tionem habet duplum lateris a b unà cum latere e f ad du
plum lateris e f unà cum a b;
habeat k m ad m l. deinde à
púcto m ad k ſumatur quarta pars ipſius m k, quæ ſit m n.
& rurſus ab l ſumatur quarta pars totius axis l k, quæ ſit
l o.
poſtremo fiat o n ad n p, ut fruſtum a g ad pyramidẽ,
cuius baſis ſit eadem, quæ fruſti, &
altitudo æqualis. Dico
punctum p fruſti a g grauitatis centrum eſſe.
ducantur
enim a c, e g:
& intelligantur duo fruſta triangulares ba-
ſes habentia, quorum alterum l f ex baſibus a b c, e f g cõ-
ſtet;
alterum l h ex baſibus a c d, e g h. Sitq; fruſti l f axis
q r;
in quo grauitatis centrum s: fruſti uero l h axis t u, &
x grauitatis centrum:
deinde iungantur u r, t q, x s. tranſi-
bit u r per l:
quoniam l eſt centrum grauitatis quadran-
guli a b c d:
& puncta r u grauitatis centra triangulorum
a b c, a c d;
in quæ quadrangulum ipſum diuiditur. eadem
quoque ratione t q per punctum _k_ tranſibit.
At uero pro
portiones, ex quibus fruſtorum grauitatis centra inquiri-
mus, eædem ſunt in toto ſruſto a g, &
in fruſtis l f, l h. Sunt
enim per octauam huius quadrilatera a b c d, e f g h ſimilia:

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index