Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
71 30
72
73 37
74
75 32
76
77 25
78
79 34
80
81 35
82
83 36
84
85 37
86
87 38
88
89 39
90
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
< >
page |< < of 213 > >|
78ARCHIMEDIS& per conuer-
48[Figure 48] ſionem rationis
ut e b ad e g,
ita f d ad f h.
eſt autem ut a e
ad e b, ita c f
ad f d.
ex æqua
li igitur ut a e
ad e g, ita c f
ad f h.
A_liter_. Aptentur lineæ a b, c d inter ſe ſe, ita ut ad partes
a c angulum faciant;
& ſint a c in uno atque eodem puncto: deinde
iungantur d b, h g, fe.
cum igitur ſit ut a e ad e b, ita c f, hoc eſt
a f ad f d;
æquidiſtabit fe ipſi d b: & ſimiliter h g eidem d b
112. ſexti: æquidiſtabit:
quoniam a h ad h d eſt, ut a g ad g b. ergo f c, h g
2230. primi inter ſe ſe æquidiſtant:
& idcirco ut a e ad e g, ita a f; hoc eſt c f ad
fh.
quod demonſtrare oportebat.
LEMMA V.
Sint rurſus duæ portiones ſimiles, contentæ rectis li-
neis, &
rectangulorum conorum ſectionibus, ut in ſupe-
riori figura a b c, cuius diameter b d:
& e f c, cuius
diameter f g:
ducaturque à puncto e linea e h, diame-
tris b d, f g æquidiſtans, quæ ſectionem a b c in _k_ ſe-
cet:
& à puncto c ducatur c h contingens ſectionem
a b c in c conueniensque cumlinea e h in h, quæ ſectio
nem quoque e f c in eodem c puncto continget, ut demon
strabitur.
Dico lineam ductam ab ipſa c h uſque ad ſe-
ctionem e f c, ita ut lineæ e h æquidistet, in eandem pro
portionem diuidi à ſectione a b c;
in quam linea c a

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index