Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
91 40
92
93 41
94
95 42
96
97 43
98
99 44
100
101 43
102
103
104
105
106
107
108
109
110
111
112
113 1
114
115 2
116
117 3
118
119 4
120
< >
page |< < (45) of 213 > >|
20145DE CENTRO GRAVIT. SOLID. ad punctum ω. Sed quoniam π circum ſcripta itidem alia
figura æquali interuallo ad portionis centrum accedit, ubi
primum φ applieuerit ſe ad ω, &
π ad punctũ ψ, hoc eſt ad
portionis centrum ſe applicabit.
quod fieri nullo modo
poſſe perſpicuum eſt.
non aliter idem abſurdum ſequetur,
ſi ponamus centrum portionis recedere à medio ad par-
tes ω;
eſſet enim aliquando centrum figuræ inſcriptæ idem
quod portionis centrũ.
ergo punctum e centrum erit gra
uitatis portionis a b c.
quod demonſtrare oportebat.
Quod autem ſupra demõſtratum eſt in portione conoi-
dis recta per figuras, quæ ex cylindris æqualem altitudi-
dinem habentibus conſtant, idem ſimiliter demonſtrabi-
mus per figuras ex cylindri portionibus conſtantes in ea
portione, quæ plano non ad axem recto abſcinditur.
ut
enim tradidimus in commentariis in undecimam propoſi
tionem libri Archimedis de conoidibus &
ſphæroidibus.
portiones cylindri, quæ æquali ſunt altitudine eam inter ſe
ſe proportionem habent, quam ipſarum baſes;
baſes autẽ
quæ ſunt ellipſes ſimiles eandem proportionem habere,
11corol. 15
deconoi-
dibus &
ſphæroi-
dibus.
quam quadrata diametrorum eiuſdem rationis, ex corol-
lario ſeptimæ propoſitionis libri de conoidibus, &
ſphæ-
roidibus, manifeſte apparet.
THEOREMA XXIIII. PROPOSITIO XXX.
SI à portione conoidis rectanguli alia portio
abſcindatur, plano baſi æquidiſtante;
habebit
portio tota ad eam, quæ abſciſſa eſt, duplam pro
portio nem eius, quæ eſt baſis maioris portionis
ad baſi m minoris, uel quæ axis maioris ad axem
minoris.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index