Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
101 43
102
103
104
105
106
107
108
109
110
111
112
113 1
114
115 2
116
117 3
118
119 4
120
121 5
122
123 6
124
125 7
126
127 8
128
129 9
130
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div286" type="section" level="1" n="96">
          <p>
            <s xml:id="echoid-s5103" xml:space="preserve">
              <pb file="0204" n="204" rhead="FED. COMMANDINI"/>
            ioris baſis ad quadratum minoris: </s>
            <s xml:id="echoid-s5104" xml:space="preserve">centrum ſit in
              <lb/>
            eo axis puncto, quo ita diuiditur ut pars, quæ mi
              <lb/>
            norem baſim attingit ad alteram partem eandem
              <lb/>
            proportionem habeat, quam dempto quadrato
              <lb/>
            minoris baſis à duabus tertiis quadrati maioris,
              <lb/>
            habet id, quod reliquum eſt unà cum portione à
              <lb/>
            tertia quadrati maioris parte dempta, ad reliquà
              <lb/>
            eiuſdem tertiæ portionem.</s>
            <s xml:id="echoid-s5105" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s5106" xml:space="preserve">SIT fruſtum à portione rectanguli conoidis abſciſſum
              <lb/>
            a b c d, cuius maior baſis circulus, uel ellipſis circa diame-
              <lb/>
            trum b c, minor circa diametrum a d; </s>
            <s xml:id="echoid-s5107" xml:space="preserve">& </s>
            <s xml:id="echoid-s5108" xml:space="preserve">axis e f. </s>
            <s xml:id="echoid-s5109" xml:space="preserve">deſcriba-
              <lb/>
            tur autem portio conoidis, à quo illud abſciſſum eſt, & </s>
            <s xml:id="echoid-s5110" xml:space="preserve">pla-
              <lb/>
              <figure xlink:label="fig-0204-01" xlink:href="fig-0204-01a" number="150">
                <image file="0204-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0204-01"/>
              </figure>
            no per axem ducto ſecetur; </s>
            <s xml:id="echoid-s5111" xml:space="preserve">ut ſuperficiei ſectio ſit parabo-
              <lb/>
            le b g c, cuius diameter, & </s>
            <s xml:id="echoid-s5112" xml:space="preserve">axis portionis g f: </s>
            <s xml:id="echoid-s5113" xml:space="preserve">deinde g f diui
              <lb/>
            datur in puncto h, ita ut g h ſit dupla h f: </s>
            <s xml:id="echoid-s5114" xml:space="preserve">& </s>
            <s xml:id="echoid-s5115" xml:space="preserve">rurſus g e in ean
              <lb/>
            dem proportionem diuidatur: </s>
            <s xml:id="echoid-s5116" xml:space="preserve">ſitq; </s>
            <s xml:id="echoid-s5117" xml:space="preserve">g _k_ ipſius k e dupla. </s>
            <s xml:id="echoid-s5118" xml:space="preserve">Iã
              <lb/>
            ex iis, quæ proxime demonſtrauimus, conſtat centrum gra
              <lb/>
            uitatis portionis b g c eſſe h punctum: </s>
            <s xml:id="echoid-s5119" xml:space="preserve">& </s>
            <s xml:id="echoid-s5120" xml:space="preserve">portionis a g c
              <lb/>
            punctum k. </s>
            <s xml:id="echoid-s5121" xml:space="preserve">ſumpto igitur infra h punctol, ita ut k h ad h </s>
          </p>
        </div>
      </text>
    </echo>