Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
11
12
13
1
14
15
2
16
17
3
18
19
4
20
21
5
22
23
6
24
25
7
26
27
8
28
29
9
30
31
10
32
33
11
34
35
12
36
37
13
38
39
14
40
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div286
"
type
="
section
"
level
="
1
"
n
="
96
">
<
p
>
<
s
xml:id
="
echoid-s5103
"
xml:space
="
preserve
">
<
pb
file
="
0204
"
n
="
204
"
rhead
="
FED. COMMANDINI
"/>
ioris baſis ad quadratum minoris: </
s
>
<
s
xml:id
="
echoid-s5104
"
xml:space
="
preserve
">centrum ſit in
<
lb
/>
eo axis puncto, quo ita diuiditur ut pars, quæ mi
<
lb
/>
norem baſim attingit ad alteram partem eandem
<
lb
/>
proportionem habeat, quam dempto quadrato
<
lb
/>
minoris baſis à duabus tertiis quadrati maioris,
<
lb
/>
habet id, quod reliquum eſt unà cum portione à
<
lb
/>
tertia quadrati maioris parte dempta, ad reliquà
<
lb
/>
eiuſdem tertiæ portionem.</
s
>
<
s
xml:id
="
echoid-s5105
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s5106
"
xml:space
="
preserve
">SIT fruſtum à portione rectanguli conoidis abſciſſum
<
lb
/>
a b c d, cuius maior baſis circulus, uel ellipſis circa diame-
<
lb
/>
trum b c, minor circa diametrum a d; </
s
>
<
s
xml:id
="
echoid-s5107
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s5108
"
xml:space
="
preserve
">axis e f. </
s
>
<
s
xml:id
="
echoid-s5109
"
xml:space
="
preserve
">deſcriba-
<
lb
/>
tur autem portio conoidis, à quo illud abſciſſum eſt, & </
s
>
<
s
xml:id
="
echoid-s5110
"
xml:space
="
preserve
">pla-
<
lb
/>
<
figure
xlink:label
="
fig-0204-01
"
xlink:href
="
fig-0204-01a
"
number
="
150
">
<
image
file
="
0204-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0204-01
"/>
</
figure
>
no per axem ducto ſecetur; </
s
>
<
s
xml:id
="
echoid-s5111
"
xml:space
="
preserve
">ut ſuperficiei ſectio ſit parabo-
<
lb
/>
le b g c, cuius diameter, & </
s
>
<
s
xml:id
="
echoid-s5112
"
xml:space
="
preserve
">axis portionis g f: </
s
>
<
s
xml:id
="
echoid-s5113
"
xml:space
="
preserve
">deinde g f diui
<
lb
/>
datur in puncto h, ita ut g h ſit dupla h f: </
s
>
<
s
xml:id
="
echoid-s5114
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s5115
"
xml:space
="
preserve
">rurſus g e in ean
<
lb
/>
dem proportionem diuidatur: </
s
>
<
s
xml:id
="
echoid-s5116
"
xml:space
="
preserve
">ſitq; </
s
>
<
s
xml:id
="
echoid-s5117
"
xml:space
="
preserve
">g _k_ ipſius k e dupla. </
s
>
<
s
xml:id
="
echoid-s5118
"
xml:space
="
preserve
">Iã
<
lb
/>
ex iis, quæ proxime demonſtrauimus, conſtat centrum gra
<
lb
/>
uitatis portionis b g c eſſe h punctum: </
s
>
<
s
xml:id
="
echoid-s5119
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s5120
"
xml:space
="
preserve
">portionis a g c
<
lb
/>
punctum k. </
s
>
<
s
xml:id
="
echoid-s5121
"
xml:space
="
preserve
">ſumpto igitur infra h punctol, ita ut k h ad h </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>