Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
111
112
113
1
114
115
2
116
117
3
118
119
4
120
121
5
122
123
6
124
125
7
126
127
8
128
129
9
130
131
10
132
133
11
134
135
12
136
137
13
138
139
14
140
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(43)
of 213
>
>|
DEIIS QVAE VEH. IN AQVA.
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
57
">
<
p
>
<
s
xml:space
="
preserve
">
<
pb
o
="
43
"
file
="
0101
"
n
="
101
"
rhead
="
DEIIS QVAE VEH. IN AQVA.
"/>
ad quadratum bd: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">quam habet portio ad humidum in
<
lb
/>
grauitate, eandem quadratum nt habet ad bd quadratũ,
<
lb
/>
ex iis, quæ dicta ſunt: </
s
>
<
s
xml:space
="
preserve
">conſtat n t lineæ ψ æqualem eſſe,
<
lb
/>
quare & </
s
>
<
s
xml:space
="
preserve
">portio-
<
lb
/>
<
anchor
type
="
figure
"
xlink:label
="
fig-0101-01a
"
xlink:href
="
fig-0101-01
"/>
nes a n z, a g q
<
lb
/>
ſunt æquales. </
s
>
<
s
xml:space
="
preserve
">Et
<
lb
/>
quoniam in por
<
lb
/>
tionibus æquali
<
lb
/>
bus, & </
s
>
<
s
xml:space
="
preserve
">ſimilibus
<
lb
/>
a g q l, a n z l, ab
<
lb
/>
extremitatibus
<
lb
/>
baſiũ ductæ ſunt
<
lb
/>
a q, a z, quæ æ-
<
lb
/>
quales portiões
<
lb
/>
abſcindunt: </
s
>
<
s
xml:space
="
preserve
">per
<
lb
/>
ſpicuum eſt an-
<
lb
/>
gulos facere æ-
<
lb
/>
quales cum por
<
lb
/>
tionum diame-
<
lb
/>
tris: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">triangu-
<
lb
/>
lorum n fs, g ω c, angulos, qui ad f ω æquales eſſe: </
s
>
<
s
xml:space
="
preserve
">itemque
<
lb
/>
æquales inter ſe, s b, c b; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">s r, c r, quare & </
s
>
<
s
xml:space
="
preserve
">n χ, g y æquales:
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">χ t y i. </
s
>
<
s
xml:space
="
preserve
">cũq; </
s
>
<
s
xml:space
="
preserve
">g h dupla ſit ipſius h i, erit n χ minor, quàm
<
lb
/>
duplaipſius χ t. </
s
>
<
s
xml:space
="
preserve
">Sit igitur n m ipſius m t dupla: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">iuncta
<
lb
/>
m K protrahatur ad e. </
s
>
<
s
xml:space
="
preserve
">Itaque centrum grauitatis totius
<
lb
/>
erit punctum K: </
s
>
<
s
xml:space
="
preserve
">partis eius, quæ eſt in humido, punctũ m: </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
eius autem, quæ extra humidum in linea protracta, quod
<
lb
/>
ſit e. </
s
>
<
s
xml:space
="
preserve
">ergo ex proxime demonſtratis patet, nõ manere por
<
lb
/>
tionem, ſed inclinari adeo, ut baſis nullo modo ſuperficiẽ
<
lb
/>
humidi contingat. </
s
>
<
s
xml:space
="
preserve
">At uero portionem conſiſtere ita, uta-
<
lb
/>
xis cum ſuperficie humidi faciat angulum angulo φ mino-
<
lb
/>
rem, ſic demonſtrabitur. </
s
>
<
s
xml:space
="
preserve
">conſiſtat enim, ſi fieri poteſt, ut
<
lb
/>
non faciat angulum minorem angulo φ: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">alia eadem diſ-
<
lb
/>
ponantur; </
s
>
<
s
xml:space
="
preserve
">ut in ſubiecta figura. </
s
>
<
s
xml:space
="
preserve
">eodem modo demonſtra</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>