Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
111
112
113
1
114
115
2
116
117
3
118
119
4
120
121
5
122
123
6
124
125
7
126
127
8
128
129
9
130
131
10
132
133
11
134
135
12
136
137
13
138
139
14
140
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div263
"
type
="
section
"
level
="
1
"
n
="
90
">
<
p
>
<
s
xml:id
="
echoid-s4485
"
xml:space
="
preserve
">
<
pb
file
="
0180
"
n
="
180
"
rhead
="
FED. COMMANDINI
"/>
fruſtum a d. </
s
>
<
s
xml:id
="
echoid-s4486
"
xml:space
="
preserve
">Sed pyramis q æqualis eſt fruſto à pyramide
<
lb
/>
abſciſſo, ut dem onſtrauimus. </
s
>
<
s
xml:id
="
echoid-s4487
"
xml:space
="
preserve
">ergo & </
s
>
<
s
xml:id
="
echoid-s4488
"
xml:space
="
preserve
">conus, uel coni por-
<
lb
/>
tio q, cuius baſis ex tribus circulis, uel ellipſibus a b, e f, c d
<
lb
/>
conſtat, & </
s
>
<
s
xml:id
="
echoid-s4489
"
xml:space
="
preserve
">altitudo eadem, quæ fruſti: </
s
>
<
s
xml:id
="
echoid-s4490
"
xml:space
="
preserve
">ipſi fruſto a d eſt æ-
<
lb
/>
qualis. </
s
>
<
s
xml:id
="
echoid-s4491
"
xml:space
="
preserve
">atque illud eſt, quod demonſtrare oportebat.</
s
>
<
s
xml:id
="
echoid-s4492
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div268
"
type
="
section
"
level
="
1
"
n
="
91
">
<
head
xml:id
="
echoid-head98
"
xml:space
="
preserve
">THEOREMA XXI. PROPOSITIO XXVI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s4493
"
xml:space
="
preserve
">
<
emph
style
="
sc
">Cvivslibet</
emph
>
fruſti à pyramide, uel cono,
<
lb
/>
uel coni portione abſcisſi, centrum grauitatis eſt
<
lb
/>
in axe, ita ut eo primum in duas portiones diui-
<
lb
/>
ſo, portio ſuperior, quæ minorem baſim attingit
<
lb
/>
ad portionem reliquam eam habeat proportio-
<
lb
/>
nem, quam duplum lateris, uel diametri maioris
<
lb
/>
baſis, vnà cum latere, uel diametro minoris, ipſi
<
lb
/>
reſpondente, habet ad duplum lateris, uel diame-
<
lb
/>
tri minoris baſis vnà cũ latere, uel diametro ma-
<
lb
/>
ioris: </
s
>
<
s
xml:id
="
echoid-s4494
"
xml:space
="
preserve
">deinde à puncto diuiſionis quarta parte ſu
<
lb
/>
perioris portionis in ipſa ſumpta: </
s
>
<
s
xml:id
="
echoid-s4495
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s4496
"
xml:space
="
preserve
">rurſus ab in-
<
lb
/>
ferioris portionis termino, qui eſt ad baſim maio
<
lb
/>
rem, ſumpta quarta parte totius axis: </
s
>
<
s
xml:id
="
echoid-s4497
"
xml:space
="
preserve
">centrum ſit
<
lb
/>
in linea, quæ his finibus continetur, atque in eo li
<
lb
/>
neæ puncto, quo ſic diuiditur, ut tota linea ad par
<
lb
/>
tem propinquiorem minori baſi, eãdem propor-
<
lb
/>
tionem habeat, quam fruſtum ad pyramidẽ, uel
<
lb
/>
conum, uel coni portionem, cuius baſis ſit ea-
<
lb
/>
dem, quæ baſis maior, & </
s
>
<
s
xml:id
="
echoid-s4498
"
xml:space
="
preserve
">altitudo fruſti altitudini
<
lb
/>
æqualis.</
s
>
<
s
xml:id
="
echoid-s4499
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>