Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
121
5
122
123
6
124
125
7
126
127
8
128
129
9
130
131
10
132
133
11
134
135
12
136
137
13
138
139
14
140
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div199
"
type
="
section
"
level
="
1
"
n
="
65
">
<
p
>
<
s
xml:id
="
echoid-s3043
"
xml:space
="
preserve
">
<
pb
file
="
0120
"
n
="
120
"
rhead
="
FED. COMMANDINI
"/>
triangulum m k φ triangulo n k φ. </
s
>
<
s
xml:id
="
echoid-s3044
"
xml:space
="
preserve
">ergo anguli l z k, o z k,
<
lb
/>
m φ k, n φ k æquales ſunt, ac recti. </
s
>
<
s
xml:id
="
echoid-s3045
"
xml:space
="
preserve
">quòd cum etiam recti
<
lb
/>
ſint, qui ad k; </
s
>
<
s
xml:id
="
echoid-s3046
"
xml:space
="
preserve
">æquidiſtabunt lineæ l o, m n axi b d. </
s
>
<
s
xml:id
="
echoid-s3047
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3048
"
xml:space
="
preserve
">ita.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3049
"
xml:space
="
preserve
">
<
note
position
="
left
"
xlink:label
="
note-0120-01
"
xlink:href
="
note-0120-01a
"
xml:space
="
preserve
">28. primi.</
note
>
demonſtrabuntur l m, o n ipſi a c æquidiſtare. </
s
>
<
s
xml:id
="
echoid-s3050
"
xml:space
="
preserve
">Rurſus ſi
<
lb
/>
iungantur a l, l b, b m, m c, c n, n d, d o, o a: </
s
>
<
s
xml:id
="
echoid-s3051
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3052
"
xml:space
="
preserve
">bifariam di
<
lb
/>
uidantur: </
s
>
<
s
xml:id
="
echoid-s3053
"
xml:space
="
preserve
">à centro autem k ad diuiſiones ductæ lineæ pro-
<
lb
/>
trahantur uſque ad ſectionem in puncta p q r s t u x y: </
s
>
<
s
xml:id
="
echoid-s3054
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3055
"
xml:space
="
preserve
">po
<
lb
/>
ſtremo p y, q x, r u, s t, q r, p s, y t, x u coniungantur. </
s
>
<
s
xml:id
="
echoid-s3056
"
xml:space
="
preserve
">Simili-
<
lb
/>
ter oſtendemus lineas
<
lb
/>
<
figure
xlink:label
="
fig-0120-01
"
xlink:href
="
fig-0120-01a
"
number
="
76
">
<
image
file
="
0120-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0120-01
"/>
</
figure
>
p y, q x, r u, s t axi b d æ-
<
lb
/>
quidiſtantes eſſe: </
s
>
<
s
xml:id
="
echoid-s3057
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3058
"
xml:space
="
preserve
">q r,
<
lb
/>
p s, y t, x u æquidiſtan-
<
lb
/>
tesipſi a c. </
s
>
<
s
xml:id
="
echoid-s3059
"
xml:space
="
preserve
">Itaque dico
<
lb
/>
harum figurarum in el-
<
lb
/>
lipſi deſcriptarum cen-
<
lb
/>
trum grauitatis eſſe pũ-
<
lb
/>
ctum k, idem quod & </
s
>
<
s
xml:id
="
echoid-s3060
"
xml:space
="
preserve
">el
<
lb
/>
lipſis centrum. </
s
>
<
s
xml:id
="
echoid-s3061
"
xml:space
="
preserve
">quadri-
<
lb
/>
lateri enim a b c d cen-
<
lb
/>
trum eſt k, ex decima e-
<
lb
/>
iuſdem libri Archime-
<
lb
/>
dis, quippe cũ in eo om
<
lb
/>
nes diametri cõueniãt.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3062
"
xml:space
="
preserve
">Sed in figura alb m c n
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0120-02
"
xlink:href
="
note-0120-02a
"
xml:space
="
preserve
">13. Archi
<
lb
/>
medis.</
note
>
d o, quoniam trianguli
<
lb
/>
alb centrum grauitatis
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0120-03
"
xlink:href
="
note-0120-03a
"
xml:space
="
preserve
">Vltima.</
note
>
eſt in linea l e: </
s
>
<
s
xml:id
="
echoid-s3063
"
xml:space
="
preserve
">trapezijq́; </
s
>
<
s
xml:id
="
echoid-s3064
"
xml:space
="
preserve
">a b m o centrum in linea e k: </
s
>
<
s
xml:id
="
echoid-s3065
"
xml:space
="
preserve
">trape
<
lb
/>
zij o m c d in k g: </
s
>
<
s
xml:id
="
echoid-s3066
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3067
"
xml:space
="
preserve
">trianguli c n d in ipſa g n: </
s
>
<
s
xml:id
="
echoid-s3068
"
xml:space
="
preserve
">erit magnitu
<
lb
/>
dinis ex his omnibus conſtantis, uidelicet totius figuræ cen
<
lb
/>
trum grauitatis in linea l n: </
s
>
<
s
xml:id
="
echoid-s3069
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3070
"
xml:space
="
preserve
">o b eandem cauſſam in linea
<
lb
/>
o m. </
s
>
<
s
xml:id
="
echoid-s3071
"
xml:space
="
preserve
">eſt enim trianguli a o d centrum in linea o h: </
s
>
<
s
xml:id
="
echoid-s3072
"
xml:space
="
preserve
">trapezij
<
lb
/>
a l n d in h k: </
s
>
<
s
xml:id
="
echoid-s3073
"
xml:space
="
preserve
">trapezij l b c n in k f: </
s
>
<
s
xml:id
="
echoid-s3074
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3075
"
xml:space
="
preserve
">trianguli b m c in fm.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3076
"
xml:space
="
preserve
">cum ergo figuræ a l b m c n d o centrum grauitatis ſit in li-
<
lb
/>
nea l n, & </
s
>
<
s
xml:id
="
echoid-s3077
"
xml:space
="
preserve
">in linea o m; </
s
>
<
s
xml:id
="
echoid-s3078
"
xml:space
="
preserve
">erit centrum ipſius punctum k, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>