Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
121 5
122
123 6
124
125 7
126
127 8
128
129 9
130
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
< >
page |< < (12) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div216" type="section" level="1" n="73">
          <p>
            <s xml:id="echoid-s3422" xml:space="preserve">
              <pb o="12" file="0135" n="135" rhead="DE CENTRO GRA VIT. SOLID."/>
            Itaque ſolidi parallelepipedi y γ centrum grauitatis eſt in
              <lb/>
            linea δ: </s>
            <s xml:id="echoid-s3423" xml:space="preserve">ſolidi u β centrum eſt in linea ε η: </s>
            <s xml:id="echoid-s3424" xml:space="preserve">& </s>
            <s xml:id="echoid-s3425" xml:space="preserve">ſolidi s z in li
              <lb/>
            nea η m, quæ quidem lineæ axes ſunt, cum planorum oppo
              <lb/>
            ſitorum centra coniungant. </s>
            <s xml:id="echoid-s3426" xml:space="preserve">ergo magnitudinis ex his ſoli
              <lb/>
            dis compoſitæ centrum grauitatis eſt in linea δ m, quod ſit
              <lb/>
            θ; </s>
            <s xml:id="echoid-s3427" xml:space="preserve">& </s>
            <s xml:id="echoid-s3428" xml:space="preserve">iuncta θ o producatur: </s>
            <s xml:id="echoid-s3429" xml:space="preserve">à puncto autem h ducatur h μ
              <lb/>
            ipſi m κ æquidiſtans, quæ cum θ o in μ conueniat. </s>
            <s xml:id="echoid-s3430" xml:space="preserve">triangu
              <lb/>
            lum igitur g h κ ad omnia triangula g z r, r β t, t γ x, x δ k,
              <lb/>
            κ δ y, y u, u s, s α h eandem habet proportionem, quam h m
              <lb/>
            ad m q; </s>
            <s xml:id="echoid-s3431" xml:space="preserve">hoc eſt, quam μ θ ad θ λ: </s>
            <s xml:id="echoid-s3432" xml:space="preserve">nam ſi h m, μ θ produci in
              <lb/>
            telligantur, quouſque coeant; </s>
            <s xml:id="echoid-s3433" xml:space="preserve">erit ob linearum q y, m k æ-
              <lb/>
            quidiſtantiam, ut h q ad q m, ita μ λ ad ad λ θ: </s>
            <s xml:id="echoid-s3434" xml:space="preserve">& </s>
            <s xml:id="echoid-s3435" xml:space="preserve">componen
              <lb/>
            do, ut h m ad m q, ita μ θ ad θ λ. </s>
            <s xml:id="echoid-s3436" xml:space="preserve">linea uero θ o maior eſt,
              <lb/>
            quàm θ λ: </s>
            <s xml:id="echoid-s3437" xml:space="preserve">habebit igitur μ θ ad θ λ maiorem proportio-
              <lb/>
              <note position="right" xlink:label="note-0135-01" xlink:href="note-0135-01a" xml:space="preserve">8. quinti.</note>
            nem, quàm ad θ o. </s>
            <s xml:id="echoid-s3438" xml:space="preserve">quare triangulum etiam g h k ad omnia
              <lb/>
            iam dicta triangula maiorem proportionẽ habebit, quàm
              <lb/>
            μ θ ad θ o. </s>
            <s xml:id="echoid-s3439" xml:space="preserve">ſed ut triangulũ g h k ad omnia triangula, ita to-
              <lb/>
            tũ priſma a f ad omnia priſmata g z r, r β t, t γ x, x δ k, k δ y,
              <lb/>
            y u, u s, s α h: </s>
            <s xml:id="echoid-s3440" xml:space="preserve">quoniam enim ſolida parallelepipeda æque al
              <lb/>
            ta, eandem inter ſe proportionem habent, quam baſes; </s>
            <s xml:id="echoid-s3441" xml:space="preserve">ut
              <lb/>
            ex trigeſimaſecunda undecimi elementorum conſtat. </s>
            <s xml:id="echoid-s3442" xml:space="preserve">ſunt
              <lb/>
              <note position="right" xlink:label="note-0135-02" xlink:href="note-0135-02a" xml:space="preserve">28. unde
                <lb/>
              cimi</note>
            autem ſolida parallelepipeda priſmatum triangulares ba-
              <lb/>
            ſes habentium dupla: </s>
            <s xml:id="echoid-s3443" xml:space="preserve">ſequitur, ut etiam huiuſmodi priſ-
              <lb/>
              <note position="right" xlink:label="note-0135-03" xlink:href="note-0135-03a" xml:space="preserve">15. quinti</note>
            matainter ſe ſint, ſicut eorum baſes. </s>
            <s xml:id="echoid-s3444" xml:space="preserve">ergo totum priſma ad
              <lb/>
            omnia priſmata maiorem proportionem habet, quam μ θ
              <lb/>
            ad θ o: </s>
            <s xml:id="echoid-s3445" xml:space="preserve">& </s>
            <s xml:id="echoid-s3446" xml:space="preserve">diuidendo ſolida parallelepipeda y γ, u β, s z ad o-
              <lb/>
              <note position="right" xlink:label="note-0135-04" xlink:href="note-0135-04a" xml:space="preserve">19. quinti
                <lb/>
              apud Cã
                <lb/>
              panum.</note>
            mnia prifmata proportionem habent maiorem, quàm μ o
              <lb/>
            ad o θ. </s>
            <s xml:id="echoid-s3447" xml:space="preserve">fiat @ o ad o θ, ut folida parallelepipeda y γ, u β, s z ad
              <lb/>
            omnia priſmata. </s>
            <s xml:id="echoid-s3448" xml:space="preserve">Itaque cum à priſmate a f, cuius cẽtrum
              <lb/>
            grauitatis eſt o, auferatur magnitudo ex ſolidis parallelepi
              <lb/>
            pedis y γ, u β, s z conſtans: </s>
            <s xml:id="echoid-s3449" xml:space="preserve">atque ipfius grauitatis centrum
              <lb/>
            ſit θ: </s>
            <s xml:id="echoid-s3450" xml:space="preserve">reliquæ magnitudinis, quæ ex omnibus priſmatibus
              <lb/>
            conſtat, grauitatis centrum erit in linea θ o producta: </s>
            <s xml:id="echoid-s3451" xml:space="preserve">& </s>
            <s xml:id="echoid-s3452" xml:space="preserve">
              <lb/>
            in puncto ν, ex o ctaua propoſitione eiuſdem libri </s>
          </p>
        </div>
      </text>
    </echo>