Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
121
5
122
123
6
124
125
7
126
127
8
128
129
9
130
131
10
132
133
11
134
135
12
136
137
13
138
139
14
140
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(12)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div216
"
type
="
section
"
level
="
1
"
n
="
73
">
<
p
>
<
s
xml:id
="
echoid-s3422
"
xml:space
="
preserve
">
<
pb
o
="
12
"
file
="
0135
"
n
="
135
"
rhead
="
DE CENTRO GRA VIT. SOLID.
"/>
Itaque ſolidi parallelepipedi y γ centrum grauitatis eſt in
<
lb
/>
linea δ: </
s
>
<
s
xml:id
="
echoid-s3423
"
xml:space
="
preserve
">ſolidi u β centrum eſt in linea ε η: </
s
>
<
s
xml:id
="
echoid-s3424
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3425
"
xml:space
="
preserve
">ſolidi s z in li
<
lb
/>
nea η m, quæ quidem lineæ axes ſunt, cum planorum oppo
<
lb
/>
ſitorum centra coniungant. </
s
>
<
s
xml:id
="
echoid-s3426
"
xml:space
="
preserve
">ergo magnitudinis ex his ſoli
<
lb
/>
dis compoſitæ centrum grauitatis eſt in linea δ m, quod ſit
<
lb
/>
θ; </
s
>
<
s
xml:id
="
echoid-s3427
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3428
"
xml:space
="
preserve
">iuncta θ o producatur: </
s
>
<
s
xml:id
="
echoid-s3429
"
xml:space
="
preserve
">à puncto autem h ducatur h μ
<
lb
/>
ipſi m κ æquidiſtans, quæ cum θ o in μ conueniat. </
s
>
<
s
xml:id
="
echoid-s3430
"
xml:space
="
preserve
">triangu
<
lb
/>
lum igitur g h κ ad omnia triangula g z r, r β t, t γ x, x δ k,
<
lb
/>
κ δ y, y u, u s, s α h eandem habet proportionem, quam h m
<
lb
/>
ad m q; </
s
>
<
s
xml:id
="
echoid-s3431
"
xml:space
="
preserve
">hoc eſt, quam μ θ ad θ λ: </
s
>
<
s
xml:id
="
echoid-s3432
"
xml:space
="
preserve
">nam ſi h m, μ θ produci in
<
lb
/>
telligantur, quouſque coeant; </
s
>
<
s
xml:id
="
echoid-s3433
"
xml:space
="
preserve
">erit ob linearum q y, m k æ-
<
lb
/>
quidiſtantiam, ut h q ad q m, ita μ λ ad ad λ θ: </
s
>
<
s
xml:id
="
echoid-s3434
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3435
"
xml:space
="
preserve
">componen
<
lb
/>
do, ut h m ad m q, ita μ θ ad θ λ. </
s
>
<
s
xml:id
="
echoid-s3436
"
xml:space
="
preserve
">linea uero θ o maior eſt,
<
lb
/>
quàm θ λ: </
s
>
<
s
xml:id
="
echoid-s3437
"
xml:space
="
preserve
">habebit igitur μ θ ad θ λ maiorem proportio-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0135-01
"
xlink:href
="
note-0135-01a
"
xml:space
="
preserve
">8. quinti.</
note
>
nem, quàm ad θ o. </
s
>
<
s
xml:id
="
echoid-s3438
"
xml:space
="
preserve
">quare triangulum etiam g h k ad omnia
<
lb
/>
iam dicta triangula maiorem proportionẽ habebit, quàm
<
lb
/>
μ θ ad θ o. </
s
>
<
s
xml:id
="
echoid-s3439
"
xml:space
="
preserve
">ſed ut triangulũ g h k ad omnia triangula, ita to-
<
lb
/>
tũ priſma a f ad omnia priſmata g z r, r β t, t γ x, x δ k, k δ y,
<
lb
/>
y u, u s, s α h: </
s
>
<
s
xml:id
="
echoid-s3440
"
xml:space
="
preserve
">quoniam enim ſolida parallelepipeda æque al
<
lb
/>
ta, eandem inter ſe proportionem habent, quam baſes; </
s
>
<
s
xml:id
="
echoid-s3441
"
xml:space
="
preserve
">ut
<
lb
/>
ex trigeſimaſecunda undecimi elementorum conſtat. </
s
>
<
s
xml:id
="
echoid-s3442
"
xml:space
="
preserve
">ſunt
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0135-02
"
xlink:href
="
note-0135-02a
"
xml:space
="
preserve
">28. unde
<
lb
/>
cimi</
note
>
autem ſolida parallelepipeda priſmatum triangulares ba-
<
lb
/>
ſes habentium dupla: </
s
>
<
s
xml:id
="
echoid-s3443
"
xml:space
="
preserve
">ſequitur, ut etiam huiuſmodi priſ-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0135-03
"
xlink:href
="
note-0135-03a
"
xml:space
="
preserve
">15. quinti</
note
>
matainter ſe ſint, ſicut eorum baſes. </
s
>
<
s
xml:id
="
echoid-s3444
"
xml:space
="
preserve
">ergo totum priſma ad
<
lb
/>
omnia priſmata maiorem proportionem habet, quam μ θ
<
lb
/>
ad θ o: </
s
>
<
s
xml:id
="
echoid-s3445
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3446
"
xml:space
="
preserve
">diuidendo ſolida parallelepipeda y γ, u β, s z ad o-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0135-04
"
xlink:href
="
note-0135-04a
"
xml:space
="
preserve
">19. quinti
<
lb
/>
apud Cã
<
lb
/>
panum.</
note
>
mnia prifmata proportionem habent maiorem, quàm μ o
<
lb
/>
ad o θ. </
s
>
<
s
xml:id
="
echoid-s3447
"
xml:space
="
preserve
">fiat @ o ad o θ, ut folida parallelepipeda y γ, u β, s z ad
<
lb
/>
omnia priſmata. </
s
>
<
s
xml:id
="
echoid-s3448
"
xml:space
="
preserve
">Itaque cum à priſmate a f, cuius cẽtrum
<
lb
/>
grauitatis eſt o, auferatur magnitudo ex ſolidis parallelepi
<
lb
/>
pedis y γ, u β, s z conſtans: </
s
>
<
s
xml:id
="
echoid-s3449
"
xml:space
="
preserve
">atque ipfius grauitatis centrum
<
lb
/>
ſit θ: </
s
>
<
s
xml:id
="
echoid-s3450
"
xml:space
="
preserve
">reliquæ magnitudinis, quæ ex omnibus priſmatibus
<
lb
/>
conſtat, grauitatis centrum erit in linea θ o producta: </
s
>
<
s
xml:id
="
echoid-s3451
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3452
"
xml:space
="
preserve
">
<
lb
/>
in puncto ν, ex o ctaua propoſitione eiuſdem libri </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>