Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
121 5
122
123 6
124
125 7
126
127 8
128
129 9
130
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
< >
page |< < of 213 > >|
FED. COMMANDINI
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="90">
          <p>
            <s xml:space="preserve">
              <pb file="0176" n="176" rhead="FED. COMMANDINI"/>
            pyramidem, uel conum, uel coni portionem candem pro-
              <lb/>
            portionem habet, quam baſes ab, cd unà cum e ſ ad ba-
              <lb/>
            ſim a b. </s>
            <s xml:space="preserve">quod demonſtrare uolebamus.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0175-01" xlink:href="fig-0175-01a">
              <image file="0175-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0175-01"/>
            </figure>
            <figure xlink:label="fig-0175-02" xlink:href="fig-0175-02a">
              <image file="0175-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0175-02"/>
            </figure>
            <note position="right" xlink:label="note-0175-01" xlink:href="note-0175-01a" xml:space="preserve">6. 11. duo
              <lb/>
            decimi</note>
          </div>
          <p>
            <s xml:space="preserve">Fruſtum uero a d æquale eſſe pyramidi, uel co
              <lb/>
            no, uel coni portioni, cuius baſis conſtat ex baſi-
              <lb/>
            bus a b, c d, e f, & </s>
            <s xml:space="preserve">altitudo fruſti altitudini eſt æ-
              <lb/>
            qualis, hoc modo oſten demus.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Sit fruſtum pyramidis a b c d e f, cuius maior baſis trian-
              <lb/>
            gulum a b c; </s>
            <s xml:space="preserve">minor d e f: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſecetur plano baſibus æquidi-
              <lb/>
            ſtante, quod ſectionem faciat triangulum g h k inter trian-
              <lb/>
            gula a b c, d e f proportionale. </s>
            <s xml:space="preserve">Iam ex iis, quæ demonſtrata
              <lb/>
            ſuntin 23. </s>
            <s xml:space="preserve">huius, patet ſruſtum a b c d e f diuidi in tres pyra
              <lb/>
            mides proportionales; </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">earum maiorem eſſe pyramidẽ
              <lb/>
            a b c d minorẽ uero d e f b. </s>
            <s xml:space="preserve">ergo pyramis à triangulo g h k
              <lb/>
            conſtituta, quæ altitudinem habeat ſruſti altitudini æqua-
              <lb/>
            lem, proportionalis eſtinter pyramides a b c d, d e f b: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">
              <lb/>
            idcirco fruſtum a b c d e f tribus dictis pyramidibus æqua
              <lb/>
            le erit. </s>
            <s xml:space="preserve">Itaque ſi intelligatur alia pyra-
              <lb/>
              <anchor type="figure" xlink:label="fig-0176-01a" xlink:href="fig-0176-01"/>
            mis æque alta, quæ baſim habeat ex tri
              <lb/>
            bus baſibus a b c, d e f, g h k conſtan-
              <lb/>
            tem; </s>
            <s xml:space="preserve">perſpicuum eſtipſam eiſdem py-
              <lb/>
            ramidibus, & </s>
            <s xml:space="preserve">propterea ipſi fruſto æ-
              <lb/>
            qualem eſſe.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="2">
            <figure xlink:label="fig-0176-01" xlink:href="fig-0176-01a">
              <image file="0176-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0176-01"/>
            </figure>
          </div>
          <p>
            <s xml:space="preserve">Rurſus ſit ſruſtum pyramidis a g, cu
              <lb/>
            ius maior baſis quadrilaterum a b c d,
              <lb/>
            minor e f g h: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">ſecetur plano baſi-
              <lb/>
            bus æquidiſtante, ita ut fiat ſectio qua-
              <lb/>
            drilaterum K lm n, quod ſit proportio
              <lb/>
            nale inter quadrilatera a b c d, e f g h. </s>
            <s xml:space="preserve">Dico pyramidem,
              <lb/>
            cuius baſis ſit æqualis tribus quadrilateris a b c d, _k_ l m n,
              <lb/>
            e f g h, & </s>
            <s xml:space="preserve">altitudo æqualis altitudini fruſti, ipſi fruſto a g
              <lb/>
            æqualem eſſe. </s>
            <s xml:space="preserve">Ducatur enim planum per lineas f b, h d,</s>
          </p>
        </div>
      </text>
    </echo>