Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
121 5
122
123 6
124
125 7
126
127 8
128
129 9
130
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
< >
page |< < (44) of 213 > >|
DE IIS QVAE VEH. IN AQVA.
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div type="section" level="1" n="56">
          <p>
            <s xml:space="preserve">
              <pb o="44" file="0099" n="99" rhead="DE IIS QVAE VEH. IN AQVA."/>
            gura: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">alia eadem diſponantur demonſtrabimus rurſum
              <lb/>
            n t æqualem eſſe ipſi u i: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">portiones a u q, a n z inter
              <lb/>
            ſe ſe æquales.
              <lb/>
            </s>
            <s xml:space="preserve">
              <anchor type="figure" xlink:label="fig-0099-01a" xlink:href="fig-0099-01"/>
            Itaque quoniã
              <lb/>
            ĩ portionibus
              <lb/>
            æqualibus, & </s>
            <s xml:space="preserve">ſi
              <lb/>
            milibus a u q l,
              <lb/>
            a n z g ductæ
              <lb/>
            sũt a q, a z, por
              <lb/>
            tiones æqua-
              <lb/>
            les auferentes;
              <lb/>
            </s>
            <s xml:space="preserve">cum diametris
              <lb/>
            portionum æ-
              <lb/>
            quales angu-
              <lb/>
            los cõtinebũt. </s>
            <s xml:space="preserve">
              <lb/>
            ergo triangulo
              <lb/>
            rum n l s, u ω c
              <lb/>
            anguli, qui cõ-
              <lb/>
            ſiſtũt ad l ω pũ-
              <lb/>
            cta, æquales ſunt: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">b s recta linea æqualis ipſi b c: </s>
            <s xml:space="preserve">ſ r ipſi cr,
              <lb/>
            n χ ipſi u h: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">χ tipſi h i. </s>
            <s xml:space="preserve">quòd cum u y dupla ſit ipſius y i,
              <lb/>
            erit n χ maior, quàm dupla χ t. </s>
            <s xml:space="preserve">Sit igitur n m ipſius m t du
              <lb/>
            pla. </s>
            <s xml:space="preserve">Rurſus ex his manifeſtum eſt, non manere ipſam por-
              <lb/>
            tionem; </s>
            <s xml:space="preserve">ſed inclinari ex parte a: </s>
            <s xml:space="preserve">ponebatur autem portio
              <lb/>
            humidi ſuperficiem in uno puncto contingere. </s>
            <s xml:space="preserve">ergo ne-
              <lb/>
            ceſſe eſt, ut eius baſis in humidum magis demergatur.</s>
            <s xml:space="preserve"/>
          </p>
          <div type="float" level="2" n="1">
            <figure xlink:label="fig-0097-01" xlink:href="fig-0097-01a">
              <image file="0097-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0097-01"/>
            </figure>
            <figure xlink:label="fig-0098-01" xlink:href="fig-0098-01a">
              <image file="0098-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0098-01"/>
            </figure>
            <figure xlink:label="fig-0099-01" xlink:href="fig-0099-01a">
              <image file="0099-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0099-01"/>
            </figure>
          </div>
        </div>
        <div type="section" level="1" n="57">
          <head xml:space="preserve">DEMONSTRATIO QVINT AE PARTIS.</head>
          <p>
            <s xml:space="preserve">HABEAT denique portio ad humidum in grauitate
              <lb/>
            minorem proportionem, quàm quadratum f p ad quadra-
              <lb/>
            tum b d: </s>
            <s xml:space="preserve">& </s>
            <s xml:space="preserve">quam proportionem habet portio ad humidũ
              <lb/>
            in grauitate, eandem quadratum, quod fit à linea ψ habeat
              <lb/>
            ad quadratum b d. </s>
            <s xml:space="preserve">erit χ minor ipſa p f. </s>
            <s xml:space="preserve">Rurſus aptetur</s>
          </p>
        </div>
      </text>
    </echo>