Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
131
10
132
133
11
134
135
12
136
137
13
138
139
14
140
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
151
20
152
153
21
154
155
22
156
157
23
158
159
24
160
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(7)
of 213
>
>|
DE CENTRO GRAVIT. SOLID.
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
68
">
<
p
>
<
s
xml:space
="
preserve
">
<
pb
o
="
7
"
file
="
0125
"
n
="
125
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
metrum habens e d. </
s
>
<
s
xml:space
="
preserve
">Quoniam igitur circuli uel ellipſis
<
lb
/>
a e c b grauitatis centrum eſt in diametro b e, & </
s
>
<
s
xml:space
="
preserve
">portio-
<
lb
/>
nis a e c centrum in linea e d: </
s
>
<
s
xml:space
="
preserve
">reliquæ portionis, uidelicet
<
lb
/>
a b c centrum grauitatis in ipſa b d conſiſtat neceſſe eſt, ex
<
lb
/>
octaua propoſitione eiuſdem.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
type
="
section
"
level
="
1
"
n
="
69
">
<
head
xml:space
="
preserve
">THEOREMA V. PROPOSITIO V.</
head
>
<
p
>
<
s
xml:space
="
preserve
">SI priſma ſecetur plano oppoſitis planis æqui
<
lb
/>
diſtante, ſectio erit figura æqualis & </
s
>
<
s
xml:space
="
preserve
">ſimilis ei,
<
lb
/>
quæ eſt oppoſitorum planorum, centrum graui
<
lb
/>
tatis in axe habens.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:space
="
preserve
">Sit priſma, in quo plana oppoſita ſint triangula a b c,
<
lb
/>
d e f; </
s
>
<
s
xml:space
="
preserve
">axis g h: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">ſecetur plano iam dictis planis æquidiſtã
<
lb
/>
te; </
s
>
<
s
xml:space
="
preserve
">quod faciat ſectionem
<
emph
style
="
sc
">K</
emph
>
l m; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">axi in pũcto n occurrat.
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">Dico _k_ l m triangulum æquale eſſe, & </
s
>
<
s
xml:space
="
preserve
">ſimile triangulis a b c
<
lb
/>
d e f; </
s
>
<
s
xml:space
="
preserve
">atque eius grauitatis centrum eſſe punctum n. </
s
>
<
s
xml:space
="
preserve
">Quo-
<
lb
/>
niam enim plana a b c
<
lb
/>
<
anchor
type
="
figure
"
xlink:label
="
fig-0125-01a
"
xlink:href
="
fig-0125-01
"/>
K l m æquidiſtantia ſecã
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0125-01a
"
xlink:href
="
note-0125-01
"/>
tur a plano a e; </
s
>
<
s
xml:space
="
preserve
">rectæ li-
<
lb
/>
neæ a b, K l, quæ ſunt ip
<
lb
/>
ſorum cõmunes ſectio-
<
lb
/>
nes inter ſe ſe æquidi-
<
lb
/>
ſtant. </
s
>
<
s
xml:space
="
preserve
">Sed æquidiſtant
<
lb
/>
a d, b e; </
s
>
<
s
xml:space
="
preserve
">cum a e ſit para
<
lb
/>
lelogrammum, ex priſ-
<
lb
/>
matis diffinitione. </
s
>
<
s
xml:space
="
preserve
">ergo
<
lb
/>
& </
s
>
<
s
xml:space
="
preserve
">al parallelogrammũ
<
lb
/>
erit; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">propterea linea
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0125-02a
"
xlink:href
="
note-0125-02
"/>
_k_l, ipſi a b æqualis. </
s
>
<
s
xml:space
="
preserve
">Si-
<
lb
/>
militer demonſtrabitur
<
lb
/>
l m æquidiſtans, & </
s
>
<
s
xml:space
="
preserve
">æqua
<
lb
/>
lis b c; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">m
<
emph
style
="
sc
">K</
emph
>
ipſi c a.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
1
">
<
figure
xlink:label
="
fig-0125-01
"
xlink:href
="
fig-0125-01a
">
<
image
file
="
0125-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0125-01
"/>
</
figure
>
<
note
position
="
right
"
xlink:label
="
note-0125-01
"
xlink:href
="
note-0125-01a
"
xml:space
="
preserve
">16. unde-
<
lb
/>
cimi.</
note
>
<
note
position
="
right
"
xlink:label
="
note-0125-02
"
xlink:href
="
note-0125-02a
"
xml:space
="
preserve
">34. prim@</
note
>
</
div
>
</
div
>
</
text
>
</
echo
>