Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
Scan
Original
131
10
132
133
11
134
135
12
136
137
13
138
139
14
140
141
15
142
143
15
144
16
145
17
146
147
18
148
149
19
150
151
20
152
153
21
154
155
22
156
157
23
158
159
24
160
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 213
>
page
|<
<
(16)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div224
"
type
="
section
"
level
="
1
"
n
="
74
">
<
pb
o
="
16
"
file
="
0144
"
n
="
144
"
rhead
="
FED. COMMANDINI
"/>
<
p
>
<
s
xml:id
="
echoid-s3635
"
xml:space
="
preserve
">SIT pyramis, cuius baſis triangulum a b c; </
s
>
<
s
xml:id
="
echoid-s3636
"
xml:space
="
preserve
">axis d e: </
s
>
<
s
xml:id
="
echoid-s3637
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3638
"
xml:space
="
preserve
">
<
lb
/>
ſecetur plano baſi æquidiſtante; </
s
>
<
s
xml:id
="
echoid-s3639
"
xml:space
="
preserve
">quod ſectionẽ faciat f g h;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3640
"
xml:space
="
preserve
">occurratq; </
s
>
<
s
xml:id
="
echoid-s3641
"
xml:space
="
preserve
">axi in puncto k. </
s
>
<
s
xml:id
="
echoid-s3642
"
xml:space
="
preserve
">Dico f g h triangulum eſſe, ipſi
<
lb
/>
a b c ſimile; </
s
>
<
s
xml:id
="
echoid-s3643
"
xml:space
="
preserve
">cuius grauitatis centrum eſt K. </
s
>
<
s
xml:id
="
echoid-s3644
"
xml:space
="
preserve
">Quoniã enim
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0144-01
"
xlink:href
="
note-0144-01a
"
xml:space
="
preserve
">16. unde
<
lb
/>
cimi</
note
>
duo plana æquidiſtantia a b c, f g h ſecantur à plano a b d;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3645
"
xml:space
="
preserve
">communes eorum ſectiones a b, f g æquidiſtantes erunt: </
s
>
<
s
xml:id
="
echoid-s3646
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3647
"
xml:space
="
preserve
">
<
lb
/>
eadem ratione æquidiſtantes ipſæ b c, g h: </
s
>
<
s
xml:id
="
echoid-s3648
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3649
"
xml:space
="
preserve
">c a, h f. </
s
>
<
s
xml:id
="
echoid-s3650
"
xml:space
="
preserve
">Quòd
<
lb
/>
cum duæ lineæ f g, g h, duabus a b, b c æquidiſtent, nec
<
lb
/>
ſintin eodem plano; </
s
>
<
s
xml:id
="
echoid-s3651
"
xml:space
="
preserve
">angulus ad g æqualis eſt angulo ad
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0144-02
"
xlink:href
="
note-0144-02a
"
xml:space
="
preserve
">10. undeci
<
lb
/>
mi.</
note
>
b: </
s
>
<
s
xml:id
="
echoid-s3652
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3653
"
xml:space
="
preserve
">ſimiliter angulus ad h angulo ad c: </
s
>
<
s
xml:id
="
echoid-s3654
"
xml:space
="
preserve
">angulusq; </
s
>
<
s
xml:id
="
echoid-s3655
"
xml:space
="
preserve
">ad f ei,
<
lb
/>
qui ad a eſt æqualis. </
s
>
<
s
xml:id
="
echoid-s3656
"
xml:space
="
preserve
">triangulum igitur f g h ſimile eſt tri-
<
lb
/>
angulo a b c. </
s
>
<
s
xml:id
="
echoid-s3657
"
xml:space
="
preserve
">At uero punctum k centrum eſſe grauita-
<
lb
/>
tis trianguli f g h hoc modo oſtendemus. </
s
>
<
s
xml:id
="
echoid-s3658
"
xml:space
="
preserve
">Ducantur pla-
<
lb
/>
na per axem, & </
s
>
<
s
xml:id
="
echoid-s3659
"
xml:space
="
preserve
">per lineas d a, d b, d c: </
s
>
<
s
xml:id
="
echoid-s3660
"
xml:space
="
preserve
">erunt communes ſe-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0144-03
"
xlink:href
="
note-0144-03a
"
xml:space
="
preserve
">16. unde-
<
lb
/>
cimi</
note
>
ctiones f K, a e æquidiſtantes: </
s
>
<
s
xml:id
="
echoid-s3661
"
xml:space
="
preserve
">pariterq; </
s
>
<
s
xml:id
="
echoid-s3662
"
xml:space
="
preserve
">k g, e b; </
s
>
<
s
xml:id
="
echoid-s3663
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3664
"
xml:space
="
preserve
">k h, e c:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3665
"
xml:space
="
preserve
">quare angulus k f h angulo e a c; </
s
>
<
s
xml:id
="
echoid-s3666
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3667
"
xml:space
="
preserve
">angulus k f g ipſi e a b
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0144-04
"
xlink:href
="
note-0144-04a
"
xml:space
="
preserve
">10. unde-
<
lb
/>
cimi</
note
>
eſt æqualis. </
s
>
<
s
xml:id
="
echoid-s3668
"
xml:space
="
preserve
">Eadem ratione
<
lb
/>
<
figure
xlink:label
="
fig-0144-01
"
xlink:href
="
fig-0144-01a
"
number
="
98
">
<
image
file
="
0144-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0144-01
"/>
</
figure
>
anguli ad g angulis ad b: </
s
>
<
s
xml:id
="
echoid-s3669
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3670
"
xml:space
="
preserve
">
<
lb
/>
anguli ad h iis, qui ad c æ-
<
lb
/>
quales erunt. </
s
>
<
s
xml:id
="
echoid-s3671
"
xml:space
="
preserve
">ergo puncta
<
lb
/>
e _K_ in triangulis a b c, f g h
<
lb
/>
ſimiliter ſunt poſita, per ſe-
<
lb
/>
xtam poſitionem Archime-
<
lb
/>
dis in libro de centro graui-
<
lb
/>
tatis planorum. </
s
>
<
s
xml:id
="
echoid-s3672
"
xml:space
="
preserve
">Sed cum e
<
lb
/>
ſit centrum grauitatis trian
<
lb
/>
guli a b c, erit ex undecíma
<
lb
/>
propoſitione eiuſdem libri,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s3673
"
xml:space
="
preserve
">K trianguli f g h grauita
<
lb
/>
tis centrum. </
s
>
<
s
xml:id
="
echoid-s3674
"
xml:space
="
preserve
">id quod demonſtrare oportebat. </
s
>
<
s
xml:id
="
echoid-s3675
"
xml:space
="
preserve
">Non aliter
<
lb
/>
in ceteris pyramidibus, quod propoſitum eſt demonſtra-
<
lb
/>
bitur.</
s
>
<
s
xml:id
="
echoid-s3676
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>