Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

Page concordance

< >
Scan Original
131 10
132
133 11
134
135 12
136
137 13
138
139 14
140
141 15
142
143 15
144 16
145 17
146
147 18
148
149 19
150
151 20
152
153 21
154
155 22
156
157 23
158
159 24
160
< >
page |< < (28) of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div254" type="section" level="1" n="87">
          <p>
            <s xml:id="echoid-s4135" xml:space="preserve">
              <pb o="28" file="0167" n="167" rhead="DE CENTRO GRAVIT. SOLID."/>
            uel coni portionis axis à centro grauitatis ita diui
              <lb/>
            ditur, ut pars, quæ terminatur ad uerticem reli-
              <lb/>
            quæ partis, quæ ad baſim, ſit tripla.</s>
            <s xml:id="echoid-s4136" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s4137" xml:space="preserve">Sit pyramis, cuius baſis triangulum a b c; </s>
            <s xml:id="echoid-s4138" xml:space="preserve">axis d e; </s>
            <s xml:id="echoid-s4139" xml:space="preserve">& </s>
            <s xml:id="echoid-s4140" xml:space="preserve">gra
              <lb/>
            uitatis centrum _K_. </s>
            <s xml:id="echoid-s4141" xml:space="preserve">Dico lineam d k ipſius _K_ e triplam eſſe.
              <lb/>
            </s>
            <s xml:id="echoid-s4142" xml:space="preserve">trianguli enim b d c centrum grauitatis ſit punctum f; </s>
            <s xml:id="echoid-s4143" xml:space="preserve">triã
              <lb/>
            guli a d c centrũ g; </s>
            <s xml:id="echoid-s4144" xml:space="preserve">& </s>
            <s xml:id="echoid-s4145" xml:space="preserve">trianguli a d b ſit h: </s>
            <s xml:id="echoid-s4146" xml:space="preserve">& </s>
            <s xml:id="echoid-s4147" xml:space="preserve">iungantur a f,
              <lb/>
            b g, c h. </s>
            <s xml:id="echoid-s4148" xml:space="preserve">Quoniam igitur centrũ grauitatis pyramidis in axe
              <lb/>
            cõſiſtit: </s>
            <s xml:id="echoid-s4149" xml:space="preserve">ſuntq; </s>
            <s xml:id="echoid-s4150" xml:space="preserve">d e, a f, b g, c h eiuſdẽ pyramidis axes: </s>
            <s xml:id="echoid-s4151" xml:space="preserve">conue
              <lb/>
              <note position="right" xlink:label="note-0167-01" xlink:href="note-0167-01a" xml:space="preserve">17. huíus</note>
            nient omnes in idẽ punctũ _k_, quod eſt grauitatis centrum.
              <lb/>
            </s>
            <s xml:id="echoid-s4152" xml:space="preserve">Itaque animo concipiamus hanc pyramidem diuiſam in
              <lb/>
            quatuor pyramides, quarum baſes ſint ipſa pyramidis
              <lb/>
            triangula; </s>
            <s xml:id="echoid-s4153" xml:space="preserve">& </s>
            <s xml:id="echoid-s4154" xml:space="preserve">axis pun-
              <lb/>
              <handwritten xlink:label="hd-0167-01" xlink:href="hd-0167-01a" number="8"/>
              <figure xlink:label="fig-0167-01" xlink:href="fig-0167-01a" number="123">
                <image file="0167-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0167-01"/>
              </figure>
            ctum k quæ quidem py-
              <lb/>
            ramides inter ſe æquales
              <lb/>
            ſunt, ut demõſtrabitur.
              <lb/>
            </s>
            <s xml:id="echoid-s4155" xml:space="preserve">Ducatur enĩ per lineas
              <lb/>
            d c, d e planum ſecãs, ut
              <lb/>
            ſit ipſius, & </s>
            <s xml:id="echoid-s4156" xml:space="preserve">baſis a b c cõ
              <lb/>
            munis ſectio recta linea
              <lb/>
            c e l: </s>
            <s xml:id="echoid-s4157" xml:space="preserve">eiuſdẽ uero & </s>
            <s xml:id="echoid-s4158" xml:space="preserve">triã-
              <lb/>
            guli a d b ſitlinea d h l. </s>
            <s xml:id="echoid-s4159" xml:space="preserve">
              <lb/>
            erit linea a l æqualis ipſi
              <lb/>
            l b: </s>
            <s xml:id="echoid-s4160" xml:space="preserve">nam centrum graui-
              <lb/>
            tatis trianguli conſiſtit
              <lb/>
            in linea, quæ ab angulo
              <lb/>
            ad dimidiam baſim per-
              <lb/>
            ducitur, ex tertia deci-
              <lb/>
            ma Archimedis. </s>
            <s xml:id="echoid-s4161" xml:space="preserve">quare
              <lb/>
              <note position="right" xlink:label="note-0167-02" xlink:href="note-0167-02a" xml:space="preserve">1. ſexti.</note>
            triangulum a c l æquale
              <lb/>
            eſt triangulo b c l: </s>
            <s xml:id="echoid-s4162" xml:space="preserve">& </s>
            <s xml:id="echoid-s4163" xml:space="preserve">propterea pyramis, cuius baſis trian-
              <lb/>
            gulum a c l, uertex d, eſt æqualis pyramidi, cuius baſis b c l
              <lb/>
            triangulum, & </s>
            <s xml:id="echoid-s4164" xml:space="preserve">idem uertex. </s>
            <s xml:id="echoid-s4165" xml:space="preserve">pyramides enim, quæ ab eodẽ
              <lb/>
              <note position="right" xlink:label="note-0167-03" xlink:href="note-0167-03a" xml:space="preserve">5. duode-
                <lb/>
              cimi.</note>
            </s>
          </p>
        </div>
      </text>
    </echo>